Периферическая нервная система. Нервная система человека Нервы их физиологическое строение и функции

Министерство здравоохранения Республики Беларусь

УО «Гомельский государственный медицинский университет»

Кафедра нормальной физиологии

Обсуждено на заседании кафедры

Протокол №__________200__года

по нормальной физиологии для студентов 2 курса

Тема: Физиология нейрона.

Время 90 минут

Учебные и воспитательные цели:

Представить информацию о значении нервной системы в организме, строении и функции периферического нерва и синапсов.

ЛИТЕРАТУРА

2. Основы физиологии человека. Под редакцией Б.И.Ткаченко. - С.-Петербург, 1994. - Т.1. - С. 43 - 53; 86 - 107.

3. Физиология человека. Под редакцией Р.Шмидта и Г.Тевса. - М., Мир.- 1996. - Т.1. - С. 26 - 67.

5. Общий курс физиологии человека и животных. Под редакцией А.Д.Ноздрачёва. - М., Высшая школа.- 1991. - Кн. 1. - С. 36 - 91.

МАТЕРИАЛЬНОЕ ОБЕСПЕЧНИЕ

1. Мультимедийная презентация 26 слайдов.

РАСЧЕТ УЧЕБНОГО ВРЕМЕНИ

Перечень учебных вопросов

Количество выделяемого времени в минутах

Строение, функции нерва.

Периферическая нервная система: черепно-мозговые и спинномозговые нервы, нервные сплетения.

Классификация нервных волокон.

Законы проведения возбуждения по нервам.

Парабиоз по Введенскому.

Синапс: строение, классификация.

Механизмы передачи возбуждения в возбуждающих и тормозных синапсах.

Всего 90 мин

1. Строение, функции нерва.

Значение нервной ткани в организме связано с основными свойствами нервных клеток (нейронов, нейроцитов) воспринимать действие раздражителя, переходить в возбужденное состояние, распространять потенциалы действия. Нервная система осуществляет регуляцию деятельности тканей и органов, их взаимосвязь и связь организма с окружающей средой. Нервная ткань состоит из нейронов, выполняющих специфическую функцию, и нейроглии, играющей вспомогательную роль, осуществляющей опорную, трофическую, секреторную, разграничительную и защитную функции.

Нервные волокна (отростки нервных клеток, покрытые оболочками) выполняют специализированную функцию-проведение нервных импульсов. Нервные волокна формируют нерв или нервный ствол, состоящий из нервных волокон, заключенных в общую соединительнотканную оболочку. Нервные волокна, проводящие возбуждение от рецепторов в ЦНС, называются афферентными, а волокна, проводящие возбуждение от ЦНС к исполнительным органам, называются эфферентными. Нервы состоят из афферентных и эфферентных волокон.

Все нервные волокна по морфологическому признаку делятся на 2 основные группы: миелиновые и безмиелиновые. Они состоят из отростка нервной клетки, который лежит в центре волокна и называется осевым цилиндром, и оболочки, образованной шванновскими клетками. На поперечном срезе нерва видны сечения осевых цилиндров, нервных волокон и покрывающие их глиальные оболочки. Между волокнами в составе ствола располагаются тонкие прослойки соединительной ткани - эндоневрий, пучки нервных волокон покрыты периневрием, который состоит из слоев клеток и фибрилл. Наружная оболочка нерва - эпиневрий представляет собой соединительную волокнистую ткань, богатую жировыми клетками, макрофагами, фибробластами. В эпиневрий по всей длине нерва поступает большое количество анастомозирующих между собой кровеносных сосудов.

Общая характеристика нервных клеток

Нейрон является структурной единицей нервной системы. В нейроне различаются сома (тело), дендриты и аксон. Структурно-функциональной единицей нервной системы является нейрон, глиальная клетка и питающие кровеносные сосуды.

Функции нейрона

Нейрон обладает раздражимостью, возбудимостью, проводимостью, лабильностью. Нейрон способен генерировать, передавать, воспринимать действие потенциала, интегрировать воздействия с формированием ответа. Нейроны обладают фоновой (без стимуляции) ивызванной (после стимула) активностью.

Фоновая активность может быть:

Единичной - генерация единичных потенциалов действия (ПД) через разные промежутки времени.

Пачковой - генерация серий по 2-10 ПД через 2-5 мс с более продолжительными промежутками времени между пачками.

Групповой - серии содержат десятки ПД.

Вызванная активность возникает:

В момент включения стимула "ON" - нейрон.

В момент выключения " OF" - нейрон.

На включение и на выключение " ON - OF" - нейроны.

Нейроны могут градуально изменять потенциал покоя под влиянием стимула.

Передаточная функция нейрона. Физиология нервов. Классификация нервов.

По строению нервы делятся на миелинизированные (мякотные) и немиелинизированные.

По направлению передачи информации (центр - периферия) нервы подразделяются на афферентные и эфферентные .

Эфферентные по физиологическому эффекту делятся на:

Двигательные (иннервируют мышцы).

Сосудодвигательные (иннервируют сосуды).

Секреторные (иннервируют железы). Нейроны обладают трофической функцией - обеспечивают метаболизм и сохранение структуры иннервируемой ткани. В свою очередь, нейрон, лишившийся объекта иннервации, также погибает.

По характеру влияния на эффекторный орган нейроны делятся на пусковые (переводят ткань из состояния физиологического покоя в состояние активности) икорригирующие (изменяют активность функционирующего органа).

Любой нерв состоит из нервных волокон - проводящего аппарата и оболочек - опорного соединительно-тканного каркаса.

Оболочки

Адвентиций. Адвентиций является самой плотной, фиброзной наружной оболочкой.

Эпинсврий. Эпиневрий это упругая, эластичная соединительно-тканная оболочка, находящаяся под адвентицием.

Периневрий. Периневрий это покрытие, состоящее из 3-10 слоев клеток эпителиоидного типа очень устойчивое к растяжению, но легко рвущееся при сшивании. Периневрий разделяет нерв на пучки, содержащие до 5000-10000 волокон.

Эндоневрий. Представляет нежную оболочку разделяющую единичные волокна и небольшие пучки. При этом является как бы гематоневральным барьером.

Периферические нервы могут рассматриваться как своеобразные аксоналъные кабели, отграниченные более или менее сложными оболочками. Эти кабели являются отростками живых клеток, а сами аксоны непрерывно обновляются при помощи потока молекул. Нервные волокна, составляющие нерв, являются отростками различных нейронов. Двигательные волокна, это отростки мотонейронов передних рогов спинного мозга и ядер ствола мозга, чувствительные - дендриты ложноунштолярных нейронов спинномозговых ганглиев, вегетативные - аксоны нейронов пограничного симпатического ствола.

Отдельное нервное волокно состоит из собственно отростка нейрона - г осевого цилиндра и миелиновой оболочки. Миелиновая оболочка образована выростами мембраны шванновских клеток и имеет фосфолипидный состав, В этом периферические нервные волокна отличаются от волокон ЦНС. где миелиновая оболочка образована выростами олигодендроцитов.

Кровоснабжение нерва осуществляется посешентарно из соседних тканей или сосудов. На поверхности нерва сформирована продольная сеть сосудов, от которой отходят множество перфорирующих ветвей к внутренним структурам нерва. С кровью к нервным волокнам поступают глюкоза, кислород, низкомолскулярные энергетические субстраты, а удаляются продукты распада.

Для выполнения функции проведения нервном)" волокну необходимо постоянно поддерживать свою структуру. Однако, собственных структур осуществляющих биосинтез для удовлетворения пластических потребностей в отростках нейрона не достаточно. Поэтому основной синтез происходит в теле нейрона с последующим транспортом образованных веществ по аксону. В значительно меньшей степени этот процесс осуществляется шванновскими клетками с дальнейшим переходом метаболитов в осевой цилиндр нервного волокна.

Аксональныи транспорт.

Выделяют быстрый и медленный тил перемещения веществ по волокну.

Быстрый ортоградный аксональный транспорт происходит со скоростью 200-400 мм в сутки и в основном ответственен за перенос составных частей мембран: фосфолигащов, липопротеинов и мембранных ферментов. Ретроградный аксональный транспорт обеспечивает перемещение частей мембран в обратном направлении со скоростью до 150-300 мм в сутки и накопление их вокруг ядра в тесной связи с лизосомами. Медленный ортоградный аксональный транспорт происходит со скоростью 1-4 мм в сутки и переносит растворимые белки и элементы внутреннего клеточного каркаса. Объем веществ, переносимый медленным транспортом значительно больше, чем быстрым.

Любой вид аксонального транспорта это энергетически зависимый процесс, выполняемый сократительными белками аналогами актина и миелина в присутствии макроэргов и ионов кальция. Энергетические субстраты и ионы поступают в нервное волокно вместе с локальным кровотоком.

Локальное кровоснабжение нерва - абсолютно необходимое условие для осуществления аксонального транспорта.

Нейрофизиология передачи импульса:

Проведение нервного импульса по волокну происходит за счет распространения по оболочке отростка волны деполяризации. Большинство периферических нервов по своим двигательным и чувствительным волокнам обеспечивают проведение импульса со скоростью до 50-60 м/сек. Собственно деполяризация процесс достаточно пассивный, тогда как восстановление мембранного потенциала покоя и способности к проведению осуществляется путем функционирования NA/K и Са насосов. Для их работы необходима АТФ, обязательным условием образования которой является наличие сегментарного кровотока. Прекращение кровоснабжения нерва сразу блокирует проведение нервного импульса.

Семиотика невропатий

Клинические симптомы развивающиеся при поражении периферических нервов определяются функциями нервных волокон, образующих нерв. Соответственно трем группам волокон имеются и три группы симптомов страдания: двигательные, чувствительные и вегетативные.

Клинические проявления этих нарушений могут проявляться симптомами выпадения функции, что встречается более часто и симптомами раздражения, последнее является более редким вариантом.

Двигательные нарушения по типу выпадения проявляются плегиями и парезами периферического характера с низким тонусом, низкими рефлексами и гипотрофиями. К симптомам раздражения следует отнести судорожное сведение мышц - крампи. Это приступообразные, болезненные стягивания одной или нескольких мышц (то что мы привыкли называть судорогой). Наиболее часто крампи локализуются в челюстно-подъязычной мышце, под затылочной мышце, аддукторах бедра, четырехглавой мышце бедра, трехглавой мышце голени. Механизм возникновения крампи недостаточно ясен, предполагается частичная морфологическая или функциональная денервация в сочетании с вегетативной ирритацией. При этом вегетативные волокна берут на себя часть функций соматических и тогда, поперечно-полосатая мышца начинает реагировать на ацетилхолин аналогично гладкой мускулатуре.

Чувствительные нарушения по типу выпадения проявляются гипестезией, анестезией. Симптомы ирритации более разнообразны: гиперестезия, гиперпатия (качественное извращение ощущения с приобретением неприятного оттенка), парестезии («мурашки», жжение в зоне иннервации), боль по ходу нервов и корешков.

Вегетативные нарушения проявляются нарушением потоотделения, страданием двигательной функции полых внутренних органов, ортостатической гипотонией, трофическими изменениями кожи и ногтей. Ирритативный вариант сопровождается болями с крайне неприятным режущим, выкручивающим компонентом, который возникает преимущественно при поражении срединного и большеберцового нервов, как наиболее богатых вегетативными волокнами.

Необходимо обратить внимание на вариабельность проявлений невропатии. Медленные изменения клинической картины происходящие в течение недель, месяцев действительно отражают динамику невропатии, тогда как изменения в течение часов или одного - двух дней чаще связаны с изменениями кровотока, температуры, электролитного баланса.

Патофизиология невропатии

Что же происходит с нервными волокнами при болезнях нерва?
Возможны четыре основных варианта изменений.

1.Валлеровскаядегенерация.

2. Атрофия и дегенерация аксона (аксонопатия).

3.Сегаентарная демиелинизация (миелинопатия).

4.Первичное поражение тел нервных клеток (невронопатия).

Валлеровская дегенерация происходит в результате грубого локального повреждения нервного волокна, чаще вследствие механических и ишемических факторов, Функция проведения по этому участку волокна нарушается полностью и сразу. Через 12-24 часа в дистальном участке волокна изменяется структура аксоплазмы, но проведение импульса сохраняется еще в течение 5-6 дней. На 3-5 день происходит деструкция окончаний нерва, а к 9 суткам - исчезновение их. С 3 по 8 день прогрессивно разрушаются мислиновыс оболочки. На второй неделе начинается деление шванновских клеток, и к 10-12 дню они образуют продольно ориентированные нервные отростки. С 4 по 14 день на проксимальных участках волокон появляются множественные колбы роста. Скорость прорастания волокна сквозь с/т в месте травмы может быть крайне малой, но дистальнее в неповрежденных отделах нерва темп регенерации способен достигать 3-4 мм в сутки. При таком типе поражения возможно хорошее восстановление.

Аксональная дегенерация происходит в результате метаболических нарушений в телах нейронов, что затем вызывает заболевание отростков. Причиной такого состояния являются системные метаболические заболевания и действие экзогенных токсинов. Аксональный некроз сопровождается поглощением миелина и остатков осевого цилиндра шванновскими клетками и макрофагами. Возможность восстановления функции нерва при этом страдании крайне низкая.

Сегментарная демиелинизация проявляется первичным поражением миелиновых оболочек при сохранности осевого цилиндра волокна. Острота развития нарушений может напоминать таковое при механической травме нерва, но нарушение функции легко обратимо, иногда в течение нескольких недель. Патоморфологически определяются непропорционально тонкие миелиновые оболочки, скопление в эндоневральном пространстве мононуклеарных фагоцитов, пролиферация отростков шванновских клеток вокруг отростков нейронов. Восстановление функции происходит быстро и в полном объеме при прекращении действия повреждающего фактора.

ПЕРИФЕРИЧЕСКАЯ НЕРВНАЯ СИСТЕМА. СПИННОМОЗГОВЫЕ НЕРВЫ

Строение нервов

Развитие спинномозговых нервов

Образование и ветвление спинномозговых нервов

Закономерности хода и ветвления нервов

Нервная система человека подразделяется на центральную, периферическую и авто-

номную части. Периферическая часть нервной системы представляет собой совокуп-

ность спинномозговых и черепных нервов. К ней относятся образуемые нервами ганглии и сплетения, а также чувствительные и двигательные окончания нервов. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, периферическая часть нервной системы объединяет всœе нервные образования, лежащие вне спинного и головного мозга. Такое объединœение в известной мере условно, так как эфферентные волокна, входящие в состав периферических нервов, являются отростками нейронов, тела которых находятся в ядрах спинного и головного мозга. С функциональной точки зрения периферическая часть нервной системы состоит из проводников, соединяющих нервные центры с рецепторами и рабочими органами. Анатомия периферических нервов имеет большое значение для клиники, как основа для диагностики и лечения заболеваний и повреждений этого отдела нервной системы.

Периферические нервы состоят из волокон, имеющих различное строение и неодина-

ковых в функциональном отношении. Учитывая зависимость отналичия или отсутствия миелиновой оболочки волокна бывают миелиновые (мякотные) или безмиелиновые (безмякотные) (Рис. 1). По диаметру миелиновые нервные волокна подразделяются на тонкие (1-4 мкм), средние (4-8 мкм) и толстые (более 8 мкм) (Рис. 2). Существует прямая зависимость между толщиной волокна и скоростью проведения нервных импульсов. В толстых миелиновых волокнах скорость проведения нервного импульса составляет примерно 80-120 м/с, в средних – 30-80 м/с, в тонких – 10-30 м/с. Толстые миелиновые волокна являются преимущественно двигательными и проводниками проприоцептивной чувствительности, средние по диаметру волокна проводят импульсы тактильной и температурной чувствительности, а тонкие – болевой. Безмиелиновые волокна имеют небольшой диаметр – 1-4 мкм и проводят импульсы со скоростью 1-2 м/с (Рис. 3). Οʜᴎ являются эфферентными волокнами вегетативной нервной системы.

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по составу волокон можно дать функциональную характеристику нерва. Среди нервов верхней конечности наибольшее содержание мелких и средних миелиновых и безмиелиновых волокон имеет срединный нерв, а наименьшее число их входит в состав лучевого нерва, локтевой нерв занимает в этом отношении среднее положение. По этой причине при повреждении срединного нерва бывают особенно выражены болевые ощущения и вегетативные расстройства (нарушения потоотделœения, сосудистые изменения, трофические расстройства). Соотношение в нервах миелиновых и безмиелиновых, тонких и толстых волокон индивидуально изменчиво. К примеру, количество тонких и средних миелиновых волокон в срединном нерве может у разных людей колебаться от 11 до 45%.

Нервные волокна в стволе нерва имеют зигзагообразный (синусоидальный) ход, что

предохраняет их от перерастяжения и создает резерв удлинœения в 12-15% от их первоначальной длины в молодом возрасте и 7-8% – в пожилом возрасте (Рис. 4).

Нервы обладают системой собственных оболочек (Рис. 5). Наружная оболочка, эпинœеврий, покрывает нервный ствол снаружи, отграничивая его от окружающих тканей, и состоит из рыхлой неоформленной соединительной ткани. Рыхлая соединительная ткань эпинœеврия выполняет всœе промежутки между отдельными пучками нервных волокон.

В эпинœеврии в большом количестве находятся толстые пучки коллагеновых волокон,

идущих преимущественно продольно, клетки фибробластического ряда, гистиоциты и жировые клетки. При изучении седалищного нерва человека и некоторых животных установлено, что эпинœеврия состоит из продольных, косых и циркулярных коллагеновых волокон, имеющих зигзагообразный извилистый ход с периодом 37-41 мкм и амплитудой около 4 мкм. Следовательно, эпинœеврия – очень динамичная структура, которая защищает нервные волокна при растяжении и изгибе.

Нет единого мнения о природе эластических волокон эпинœеврия. Одни авторы считают, что в эпинœеврии отсутствуют зрелые эластические волокна, но обнаружены два вида близких к эластину волокон: окситалановые и элауниновые, которые располагаются параллельно оси нервного ствола. Другие исследователи считают их эластическими волокнами. Жировая ткань является составной частью эпинœеврия.

При исследовании черепных нервов и ветвей крестцового сплетения взрослых людей

установлено, что толщина эпинœеврия колеблется в пределах от 18-30 до 650 мкм, но

чаще составляет 70-430 мкм.

Эпинœеврий – в основном питающая оболочка. В эпинœеврии проходят кровеносные и

лимфатические сосуды, vasa nervorum , которые проникают отсюда в толщу нервного

ствола (Рис. 6).

Следующая оболочка, перинœеврий, покрывает пучки волокон, из которых состоит нерв Она является механически наиболее прочной. При световой и электронной

микроскопии установлено, что перинœеврий состоит из нескольких (7-15) слоев плоских клеток (перинœеврального эпителия, нейротелия) толщиной от 0.1 до 1.0 мкм, между которыми располагаются отдельные фибробласты и пучки коллагеновых волокон. Установлено, что пучки коллагеновых волокон имею в перинœеврии плотное расположение и ориентированы как в продольном, так и концентрическом направлениях. Тонкие коллагеновые волокна образуют в перинœеврии двойную спиральную систему. Причем волокна образуют в перинœеврии волнистые сети с периодичностью около 6 мкм. В перинœеврии найдены элауниновые и окситалановые волокна, ориентированные преимущественно продольно, причем первые в основном локализуются в поверхностном его слое, а вторые – в глубоком слое.

Толщина перинœеврия в нервах с многопучковой структурой находится в прямой зависимости от величины покрываемого им пучка: вокруг мелких пучков не превышает 3-5 мкм, крупные пучки нервных волокон покрываются перинœевральным футляром толщиной от 12-16 до 34-70 мкм. Данные электронной микроскопии свидетельствуют, что перинœеврий имеет гофрированную, складчатую организацию. Перинœеврию придается большое значение в барьерной функции и обеспечении прочности нервов. Перинœеврий, внедряясь в толщу нервного пучка, образует там соединительнотканные перегородки толщиной 0.5-6.0 мкм, которые делят пучок на части. Подобная сегментация пучков чаще наблюдается в поздних периодах онтогенеза.

Перинœевральные влагалища одного нерва соединяются с перинœевральными влагали-

щами сосœедних нервов, и через эти соединœения происходит переход волокон из одного нерва в другой. В случае если учесть всœе эти связи, то периферическую нервную систему верхней или нижней конечности можно рассматривать как сложную систему связанных между собой перинœевральных трубок, по которым осуществляется переход и обмен нервных волокон как между пучками в пределах одного нерва, так и между сосœедними нервами. Самая внутренняя оболочка, эндоневрий, покрывает тонким соединительнотканным

футляром отдельные нервные волокна (Рис. 8). Клетки и внеклеточные структуры эн-

доневрия вытянуты и ориентированы преимущественно по ходу нервных волокон. Количество эндоневрия внутри перинœевральных футляров по сравнению с массой нервных волокон невелико.

Нервные волокна сгруппированы в отдельные пучки различного калибра. У разных авторов существуют различные определœения пучка нервных волокон в зависимости от позиции, с которой эти пучки рассматриваются: с точки зрения нейрохирургии и микрохирургии или с точки зрения морфологии. Классическим определœением нервного пучка является группа нервных волокон, ограниченная от других образований нервногоствола перинœевральной оболочкой. И этим определœением руководствуются при исследовании морфологи. При этом при микроскопическом исследовании нервов часто наблюдаются такие состояния, когда несколько групп нервных волокон, прилежащих друг к другу, имеют не только собственные перинœевральные оболочки, но и окружены об-

щим перинœеврием. Эти группы нервных пучков часто бывают видны при макроскопическом исследовании поперечного среза нерва во время нейрохирургического вмешательства. И эти пучки чаще всœего описываются при клинических исследованиях. Из-за различного понимания строения пучка происходят в литературе противоречия при описании внутриствольного строения одних и тех же нервов. В связи с этим ассоциации нервных пучков, окруженные общим перинœеврием, получили название первичных пучков, а более мелкие, их составляющие, – вторичных пучков. На поперечном срезе нервов человека соединительнотканные оболочки (эпинœеврий перинœеврий) занимают значительно больше места (67-84%), чем пучки нервных волокон. Показано, что количество соединительной ткани зависит от числа пучков в нерве.

Ее значительно больше в нервах с большим количеством мелких пучков, чем в нервах с немногими крупными пучками.

Учитывая зависимость отстроения пучков выделяют две крайние формы нервов: малопучко-

вую и многопучковую. Первая характеризуется небольшим количеством толстых пучков и слабым развитием связей между ними. Вторая состоит их множества тонких пучков с хорошо развитыми межпучковыми соединœениями.

Когда количество пучков небольшое, пучки имеют значительные размеры, и наоборот.

Малопучковые нервы отличаются сравнительно небольшой толщиной, наличием не-

большого количества крупных пучков, слабым развитием межпучковых связей, частым расположением аксонов внутри пучков. Многопучковые нервы отличаются большей толщиной и состоят из большого количества мелких пучков, в них сильно развиты межпучковые связи, аксоны располагаются в эндоневрии рыхло.

Толщина нерва не отражает количества содержащихся в нем волокон, и не существует закономерностей расположения волокон на поперечном срезе нерва. При этом установлено, что в центре нерва пучки всœегда тоньше, на периферии – наоборот. Толщина пучка не характеризует количества заключенных в нем волокон.

В строении нервов установлена четко выраженная асимметрия, то есть неодинаковое

строение нервных стволов на правой и левой сторонах тела. К примеру, диафрагмаль-

ный нерв имеет слева большее количество пучков, чем справа, а блуждающий нерв

наоборот. У одного человека разница в количестве пучков между правым и левым срединными нервами может варьировать от 0 до 13, но чаще составляет 1-5 пучков. Разница в количестве пучков между срединными нервами разных людей равняется 14-29 и с возрастом увеличивается. В локтевом нерве у одного и того же человека разница между правой и левой сторонами в количестве пучков может колебаться от 0 до 12, но чаще составляет также 1-5 пучков. Различие в количестве пучков между нервами разных людей достигает 13-22.

Разница между отдельными субъектами в количестве нервных волокон колеблется в

срединном нерве от 9442 до 21371, в локтевом нерве – от 9542 до 12228. У одного и того же человека разница между правой и левой стороной варьирует в срединном нерве от 99 до 5139, в локтевом нерве – от 90 до 4346 волокон.

Источниками кровоснабжения нервов являются сосœедние близлежащие артерии и их

ветви (Рис. 9). К нерву обычно подходят несколько артериальных ветвей, причем ин-

тервалы между входящими сосудами варьируют в крупных нервах от 2-3 до 6-7 см, а в седалищном нерве – до 7-9 см. Вместе с тем, такие крупные нервы, как срединный и седалищный, имеют собственные сопровождающие артерии. В нервах, имеющих большое количество пучков, в эпинœеврии содержится много кровеносных сосудов, причем они имеют сравнительно малый калибр. Наоборот, в нервах с небольшим количеством пучков сосуды одиночные, но значительно более крупные. Артерии, питающие нерв, в эпинœеврии Т-образно делятся на восходящую и нисходящую ветви. Внутри нервов артерии делятся до ветвей 6-го порядка. Сосуды всœех порядков анастомозируют между собой, образуя внутриствольные сети. Эти сосуды играют значительную роль в развитии коллатерального кровообращения при выключении крупных артерий. Каждая артерия нерва сопровождается двумя венами.

Лимфатические сосуды нервов находятся в эпинœеврии. В перинœеврии между его слоями образуются лимфатические щели, сообщающиеся с лимфатическими сосудами эпинœеврия и эпинœевральными лимфатическими щелями. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, по ходу нервов может распространяться инфекция. Из больших нервных стволов обычно выходят несколько лимфатических сосудов.

Оболочки нервов иннервируются ветвями, отходящими от данного нерва. Нервы нервов имеют в основном симпатическое происхождение и по функции являются сосудодвигательными.

16-09-2012, 21:50

Описание

В периферической нервной системе различают следующие компоненты:
  1. Ганглии.
  2. Нервы.
  3. Нервные окончания и специализированные органы чувств.

Ганглии

Ганглии представляют собой скопление нейронов, формирующих в анатомическом смысле небольшие узелки различного размера, разбросанные в различных участках тела. Различают два типа ганглиев - цереброспинальные и вегетативные. Тела нейронов спинномозговых ганглиев, как правило, округлой формы и различного размера (от 15 до 150 мкм). Ядро располагается в центре клетки и содержит четкое круглое ядрышко (рис. 1.5.1).

Рис. 1.5.1. Микроскопическое строение интрамурального ганглия (а) и цитологические особенности ганглиозных клеток (б): а - группы ганглиозных клеток, окруженные волокнистой соединительной тканью. Снаружи ганглий покрыт капсулой, к которой прилежит жировая клетчатка; б-нейроны ганглия (1- влючение в цитоплазме ганглиозной клетки; 2 - гипертрофированое ядрышко; 3 - клетки-сателлиты)

Каждое тело нейрона отделено от окружающей соединительной ткани прослойкой уплощенных капсулярных клеток (амфицитов). Их можно отнести к клеткам глиальной системы. Проксимальный отросток каждой ганглиозной клетки в заднем корешке разделяется на две ветви. Одна из них вливается в спинномозговой нерв, в котором проходит к рецепторному окончанию. Вторая входит в задний корешок и достигает заднего столба серого вещества на той же стороне спинного мозга.

Ганглии вегетативной нервной системы по строению сходны с цереброспинальными ганглиями. Наиболее существенное отличие сводится к тому, что нейроны вегетативных ганглиев мультиполярны. В области глазницы обнаруживаются различные вегетативные ганглии, обеспечивающие иннервацию глазного яблока.

Периферические нервы

Периферические нервы являются четко определяемыми анатомическими образованиями и довольно прочны. Нервный ствол окутывается снаружи соединительнотканным футляром на всем протяжении. Этот наружный футляр называют эпинервием. Группы из нескольких пучков нервных волокон окружаются периневрием. От периневрия отделяются тяжи рыхлой волокнистой соединительной ткани, окружающие отдельные пучки нервных волокон. Это эндоневрий (рис. 1.5.2).

Рис. 1.5.2. Особенности микроскопического строения периферического нерва (продольный срез): 1- аксоны нейронов: 2- ядра шванновских клеток (леммоциты); 3-перехват Ранвье

Периферические нервы обильно снабжены кровеносными сосудами.

Периферический нерв состоит из различного количества плотно упакованных нервных волокон, являющихся цитоплазматическими отростками нейронов. Каждое периферическое нервное волокно покрыто тонким слоем цитоплазмы - неврилеммой, или шванновской оболочкой . Шванновские клетки (леммоциты), участвующие в формировании этой оболочки, происходят из клеток нервного гребня.

В некоторых нервах между нервным волокном и шванновской клеткой располагается слой миелина . Первые называются миелинизированными, а вторые - немиелинизированными нервными волокнами.

Миелин (рис. 1.5.3)

Рис. 1.5.3. Периферический нерв. Перехваты Ранвье: а - светооптическая микроскопия. Стрелкой указан перехват Ранвье; б-ультраструктурные особенности (1-аксоплазма аксона; 2- аксолемма; 3 - базальная мембрана; 4 - цитоплазма леммоцита (шванновская клетка); 5 - цитоплазматическая мембрана леммоцита; 6 - митохондрия; 7 - миелиновая оболочка; 8 - нейрофилламенты; 9 - нейротрубочки; 10 - узелковая зона перехвата; 11 - плазмолемма леммоцита; 12 - пространство между соседними леммоцитами)

покрывает нервное волокно не сплошь, а через определенное расстояние прерывается. Участки прерывания миелина обозначаются перехватами Ранвье. Расстояние между последовательными перехватами Ранвье варьирует от 0,3 до 1,5 мм. Перехваты Ранвье имеются и в волокнах центральной нервной системы, где миелин образует олигодендроциты (см. выше). Нервные волокна разветвляются именно в перехватах Ранвье.

Каким образом формируется миелиновая оболочка периферических нервов ? Первоначально шванновская клетка обхватывает аксон, так что он располагается в желобке. Затем эта клетка как бы наматывается на аксон. При этом участки цитоплазматической мембраны по краям желобка вступают в контакт друг с другом. Обе части цитоплазматической мембраны остаются соединенными, и тогда видно, что клетка продолжает обматывать аксон по спирали. Каждый виток на поперечном разрезе имеет вид кольца, состоящего из двух линий цитоплазматической мембраны. По мере наматывания цитоплазма шванновской клетки выдавливается в тело клетки.

Некоторые афферентные и вегетативные нервные волокна не имеют миелиновой оболочки. Тем не менее они защищены шванновскими клетками. Это происходит благодаря вдавливанию аксонов в тело шванновских клеток.

Механизм передачи нервного импульса в немиелинизированном волокне освещен в руководствах по физиологии. Здесь мы лишь кратко охарактеризуем основные закономерности процесса.

Известно, что цитоплазматическая мембрана нейрона поляризованна , т. е. между внутренней и наружной поверхностью мембраны существует электростатический потенциал, равный - 70 мВ. Причем внутренняя поверхность обладает отрицательным, а наружная положительным зарядом. Подобное состояние обеспечивается действием натрий-калиевого насоса и особенностями белкового состава внутрицитоплазматического содержимого (преобладание отрицательно заряженных белков). Поляризованное состояние называют потенциалом покоя.

При стимуляции клетки, т. е. нанесении раздражения цитоплазматической мембраны самыми разнообразными физическими, химическими и др. факторами, первоначально наступает деполяризация, а затем реполяризация мембраны . В физико-химическом смысле при этом наступает обратимое изменение в цитоплазме концентрации ионов К и Na. Процесс реполяризации активный с использованием энергетических запасов АТФ.

Волна деполяризации - реполяризации распространяется вдоль цитоплазматической мембраны (потенциал действия). Таким образом, передача нервного импульса есть не что иное, как распространяющаяся волна потенциала действи я.

Каково же значение в передаче нервного импульса миелиновой оболочки? Выше указано, что миелин прерывается в перехватах Ранвье. Поскольку только в перехватах Ранвье цитоплазматическая мембрана нервного волокна контактирует с тканевой жидкостью, только в этих местах возможна деполяризация мембраны таким же образом, как в немиелинизированных волокнах. На остальном протяжении этот процесс невозможен в связи с изолирующими свойствами миелина. В результате этого между перехватами Ранвье (от одного участка возможной деполяризации до другого) передача нервного импульса осуществляется внутрицитоплазматическими местными токами . Поскольку электрический ток проходит гораздо быстрее, чем непрерывная волна деполяризации, передача нервного импульса в миелинизированном нервном волокне происходит значительно быстрее (в 50 раз), причем скорость увеличивается с увеличением диаметра нервного волокна, что обусловлено снижением внутреннего сопротивления. Подобный тип передачи нервного импульса называется сальтаторным. т. е. прыгающим. Исходя из изложенного, видно важное биологическое значение миелиновых оболочек.

Нервные окончания

Афферентные (чувствительные) нервные окончания (рис. 1.5.5, 1.5.6).

Рис. 1.5.5. Особенности строения различных рецепторных окончаний: а - свободные нервные окончания; б- тельце Мейснера; в - колба Краузе; г - тельце Фатер-Пачини; д - тельце Руффини

Рис. 1.5.6. Строение нервно-мышечного веретена: а-моторная иннервация интрафузальных и экстрафузальных мышечных волокон; б спиральные афферентные нервные окончания вокруг интрафузальных мышечных волокон в области ядерных сумок (1 - нервно-мышечные эффекторные окончания экстрафузальных мышечных волокон; 2 - моторные бляшки интрафузальных мышечных волокон; 3 - соединительнотканная капсула; 4 - ядерная сумка; 5 - чувствительные кольцеспиральные нервные окончания вокруг ядерных сумок; 6 - скелетные мышечные волокна; 7 - нерв)

Афферентные нервные окончания представляют собой концевые аппараты дендритов чувствительных нейронов, повсеместно располагающихся во всех органах человека и дающие информацию центральной нервной системе об их состоянии. Воспринимают они раздражения, исходящие и из внешней среды, преобразуя их в нервный импульс. Механизм возникновения нервного импульса характеризуется уже описанными явлениями поляризации и деполяризации цитоплазматической мембраны отростка нервной клетки.

Существует ряд классификаций афферентных окончаний - в зависимости от специфичности раздражения (хеморецепторы, барорецепторы, механорецепторы, терморецепторы и др.), от особенностей строения (свободные нервные окончания и несвободные).

Обонятельные, вкусовые, зрительные и слуховые рецепторы, а также рецепторы, воспринимающие движение частей тела относительно направления силы тяжести, называют специальными органами чувств . В последующих главах этой книги мы подробно остановимся только на зрительных рецепторах.

Рецепторы разнообразны по форме, строению и функциям . В данном разделе нашей задачей не является подробное описание различных рецепторов. Упомянем лишь о некоторых из них в разрезе описания основных принципов строения. При этом необходимо указать на различия свободных и несвободных нервных окончаний. Первые характеризуются тем, что они состоят только из ветвления осевых цилиндров нервного волокна и клетки глии. При этом они контактируют разветвлениями осевого цилиндра с клетками, возбуждающими их (рецепторы эпителиальных тканей). Несвободные нервные окончания отличаются тем, что в своем составе они содержат все компоненты нервного волокна. Если они покрыты соединительнотканной капсулой, они называются инкапсулированными (тельце Фатер-Пачини, осязательное тельце Мейснера, терморецепторы колбы Краузе, тельца Руффини и др.).

Разнообразно строение рецепторов мышечной ткани, часть которых обнаруживается в наружных мышцах глаза. В этой связи на них мы остановимся более подробно. Наиболее распространенным рецептором мышечной ткани является нервно-мышечное веретено (рис. 1.5.6). Это образование регистрирует растяжение волокон поперечно-полосатых мышц. Представляют они собой сложные инкапсулированные нервные окончания, обладающие как чувствительной, так и двигательной иннервацией. Число веретен в мышце зависит от ее функции и тем выше, чем более точными движениями она обладает. Нервно-мышечное веретено располагается вдоль мышечных волокон. Веретено покрыто тонкой соединительнотканной капсулой (продолжение периневрия), внутри которой находятся тонкие поперечнополосатые интрафузальные мышечные волокна двух видов:

  • волокна с ядерной сумкой - в расширенной центральной части которых содержатся скопления ядер (1-4- волокна/веретено);
  • волокна с ядерной цепочкой - более тон кие с расположением ядер в виде цепочки в центральной части (до 10 волокон/веретено).

Чувствительные нервные волокна образуют кольцеспиральные окончания на центральной части интрафузальных волокон обоих типов и гроздьевидные окончания у краев волокон с ядерной цепочкой.

Двигательные нервные волокна - тонкие, образуют мелкие нервно-мышечные синапсы по краям интрафузальных волокон, обеспечивая их тонус.

Рецепторами растяжения мышцы являются также нервно-сухожильные веретена (сухожильные органы Гольджи). Это веретеновидные инкапсулированные структуры длиной около 0,5-1,0 мм. Располагаются они в области соединения волокон поперечнополосатых мышц с коллагеновыми волокнами сухожилий. Каждое веретено образовано капсулой из плоских фиброцитов (продолжение периневрия), которая охватывает группу сухожильных пучков, оплетенных многочисленными терминальными веточками нервных волокон, частично покрытых леммоцитами. Возбуждение рецепторов возникает при растяжении сухожилия во время мышечного сокращения.

Эфферентные нервные окончания несут информацию от центральной нервной системы к исполнительному органу. Это окончания нервных волокон на мышечных клетках, железах и др. Более подробное их описание будет приведено в соответствующих разделах. Здесь мы подробно остановимся лишь на нервно-мышечном синапсе (моторная бляшка). Моторная бляшка располагается на волокнах поперечнополосатых мышц. Состоит она из концевого ветвления аксона, образующего пресинаптическую часть, специализированного участка на мышечном волокне, соответствующего постсинаптической части, и разделяющей их синаптической щели. В крупных мышцах один аксон иннервирует большое количество мышечных волокон, а в небольших мышцах (наружные мышцы глаза) каждое мышечное волокно или их небольшая группа иннервируется одним аксоном. Один мотонейрон в совокупности с иннервируемыми им мышечными волокнами образует двигательную единицу.

Пресинаптическая часть формируется следующим образом . Вблизи мышечного волокна аксон утрачивает миелиновую оболочку и дает несколько веточек, которые сверху покрыты уплощенными леммоцитами и базальной мембраной, переходящей с мышечного волокна. В терминалах аксона имеются митохондрии и синаптические пузырьки, содержащие ацетилхолин.

Синаптическая щель имеет ширину 50 нм. Располагается она между плазмолеммой ветвлений аксона и мышечного волокна. Содержит она материал базальной мембраны и отростки глиальных клеток, разделяющих соседние активные зоны одного окончания.

Постсинаптическая часть представлена мембраной мышечного волокна (сарколеммой), образующей многочисленные складки (вторичные синаптические щели). Эти складки увеличивают общую площадь щели и заполнены материалом, являющимся продолжением базальной мембраны. В области нервно-мышечного окончания мышечное волокно не имеет исчерченности. содержит многочисленные митохондрии, цистерны шероховатого эндоплазматического ретикулума и скопление ядер.

Механизм передачи нервного импульса на мышечное волокно сходен с таковым в химическом межнейронном синапсе. При деполяризации пресинаптической мембраны происходит выделение ацетилхолина в синаптическую щель. Связывание ацетилхолина с холинорецепторами в постсинаптической мембране вызывает ее деполяризацию и последующее сокращение мышечного волокна. Медиатор отщепляется от рецептора и быстро разрушается ацетил-холинэстеразой.

Регенерация периферических нервов

При разрушении участка периферического нерва в течение недели наступает восходящая дегенерация проксимальной (ближайшей к телу нейрона) части аксона с последующим некрозом как аксона, так и шванновской оболочки. На конце аксона формируется расширение (ретракционная колба). В дистальной части волокна после его перерезки отмечается нисходящая дегенерация с полным разрушением аксона, распадом миелина и последующим фагоцитозом детрита макрофагами и глией (рис. 1.5.8).

Рис. 1.5.8. Регенерация миелинового нервного волокна: а - после перерезки нервного волокна проксимальная часть аксона (1) подвергается восходящей дегенерации, миелиновая оболочка (2) в области повреждения распадается, перикарион (3) нейрона набухает, ядро смещается к периферии, хромафильная субстанция (4) распадается; б-дистальная часть, связанная с иннервируемым органом, претерпевает нисходящую дегенерацию с полным разрушением аксона, распадом миелиновой оболочки и фагоцитозом детрита макрофагами (5) и глией; в - леммоциты (6) сохраняются и митотически делятся, формируя тяжи - ленты Бюгнера (7), соединяющиеся с аналогичными образованиями в проксимальной части волокна (тонкие стрелки). Через 4-6 недель структура и функция нейрона восстанавливается, от проксимальной части аксона дистально отрастают тонкие веточки (жирная стрелка), растущие вдоль ленты Бюгнера; г - в результате регенерации нервного волокна восстанавливается связь с органом-мишенью и регрессирует ее атрофия: д - при возникновении преграды (8) на пути регенерирующего аксона компоненты нервного волокна формируют травматическую неврому (9), которая состоит из разрастающихся веточек аксона и леммоцитов

Начало регенерации характеризуется сначала пролиферацией шванновских клеток , их передвижением вдоль распавшегося волокна с образованием клеточного тяжа, лежащего в эндоневральных трубках. Таким образом, шванновские клетки восстанавливают структурную целостность в месте разреза . Фибробласты также пролиферируют, но медленнее шванновских клеток. Указанный процесс пролиферации шванновских клеток сопровождается одновременной активацией макрофагов, которые первоначально захватывают, а затем лизируют оставшийся в результате разрушения нерва материал.

Следующий этап характеризуется прорастанием аксонов в щели , образованные шванновскими клетками, проталкиваясь от проксимального конца нерва к дистальному. При этом от ретракционной колбы в направлении дистальной части волокна начинают отрастать тонкие веточки (конусы роста). Регенерирующий аксон растет в дистальном направлении со скоростью 3-4 мм сут вдоль лент из шванновских клеток (ленты Бюгнера), которые играют направляющую роль. В последующем наступает дифференциация шванновских клеток с образованием миелина и окружающей соединительной ткани. Коллатерали и терминали аксонов восстанавливаются в течение нескольких месяцев. Регенерация нервов происходит только при условии отсутствия повреждения тела нейрона , небольшом расстоянии между поврежденными концами нерва, отсутствии между ними соединительной ткани. При возникновении преграды на пути регенерирующего аксона развивается ампутационная нейрома. Регенерация нервных волокон в центральной нервной системе отсутствует.

Статья из книги: .

К периферическим нервам относят черепные и спинномозговые нервы, соединяющие центральную нервную систему (ЦНС) с периферическими органами и тканями. Спинномозговые нервы формируются при слиянии вентральных (передних) и дорсальных (задних) нервных корешков в месте их выхода из позвоночного канала. Задние нервные корешки образуют утолщения - спинальные ганглии (или задние корешковые ганглии). Спинномозговые нервы относительно короткие - их длина составляет менее 1 см. Проходя через межпозвоночное отверстие, спинномозговые нервы делятся на вентральную (переднюю) и дорсальную (заднюю) ветви.

Задняя ветвь обеспечивает иннервацию мышц, выпрямляющих позвоночник, а также кожи туловища в этой области. Передняя ветвь иннервирует мышцы и кожу передней части туловища; кроме того, от нее отходят чувствительные волокна к париетальной плевре и париетальной брюшине.

Передняя ветвь также дает начало ветвям шейного, плечевого и пояснично-крестцового нервных сплетений. Таким образом, значение понятия «ветвь» может изменяться в зависимости от контекста. (Подробное описание нервных сплетений представлено в главах, посвященных анатомии.)

Грудной сегмент спинного мозга и нервные корешки.
Стрелками указано направление проведения импульса. Зеленым цветом обозначено симпатическое нервное волокно.

Периферические нейроны частично расположены в ЦНС. Двигательные (эфферентные) нервные волокна, иннервирующие скелетную мускулатуру, начинаются от мультиполярных а- и у-нейронов, расположенных в переднем роге серого вещества. Строение этих нейронов соответствует общим принципам, характерным для мотонейронов. Более подробная информация представлена в отдельной статье на сайте. Задние нервные корешки берут начало от униполярных нейронов, тела которых расположены в спинальных ганглиях, а чувствительные (афферентные) центральные отростки входят в задний рог серого вещества спинного мозга.

В состав спинномозгового нерва входят соматические эфферентные нервные волокна, направляющиеся к скелетной мускулатуре туловища и конечностей, и соматические афферентные нервные волокна, проводящие возбуждение от кожи, мышц и суставов. Кроме того, в спинномозговом нерве расположены висцеральные эфферентные и, в некоторых случаях, афферентные вегетативные нервные волокна.

Общие принципы внутреннего строения периферических нервов схематично изображены на рисунке ниже. Только лишь по строению нервных волокон невозможно определить, являются они двигательными или чувствительными.

Периферические нервы окружены эпиневрием - внешним слоем, состоящим из плотной неравномерной соединительной ткани и располагающимся вокруг пучков нервных волокон и сосудов, кровоснабжающих нерв. Нервные волокна периферических нервов могут переходить из одного пучка в другой.

Каждый пучок нервных волокон покрыт периневрием, представленным несколькими отчетливо различимыми эпителиальными слоями, связанными плотными щелевидными соединениями. Отдельные шванновские клетки окружены эндоневрием, образованным ретикулярными коллагеновыми волокнами.

Менее половины нервных волокон покрыто миелиновой оболочкой. Немиелинизированные нервные волокна расположены в глубоких складках шванновских клеток.

Понятие «нервное волокно», как правило, применяют при описании проведения нервного импульса; в этом контексте оно заменяет термин «аксон». Миелинизированные нервные волокна представляют собой аксоны, окруженные концентрически расположенными слоями (пластинками) миелина, образованными плазматическими мембранами шванновских клеток. Немиелинизированные нервные волокна окружены отдельными немиелинизируюгцими шванновскими клетками; плазматическая мембрана этих клеток - нейролемма - одновременно покрывает несколько немиелинизированных нервных волокон (аксонов). Структура, образованная таким аксоном и шванновской клеткой, получила название «ганглий Ремака».


Строение грудного спинномозгового нерва. Обратите внимание: на рисунке не указан симпатический компонент.
КП - концевая пластинка двигательного нерва на мышце; НОМВ - нервное окончание мышечного веретена; МН - мультиполярный .

а) Образование миелина . Шванновские клетки (леммоциты) - представители нейроглиальных клеток периферической нервной системы. Эти клетки образуют непрерывную цепочку вдоль периферических нервных волокон. Каждая шванновская клетка миелинизирует участок нервного волокна длиной от 0,3 до 1 мм. Видоизменяясь, шванновские клетки образуют в спинальных и вегетативных ганглиях сателлитные глиоциты, а в области нервно-мышечных соединений - клетки телоглии.

В процессе миелинизации аксона одновременно участвуют все окружающие его шванновские клетки. Каждая шванновская клетка оборачивается вокруг аксона, образуя «дупликатуру» плазматической мембраны,-мезаксон. Мезаксон поступательно смещается, накручиваясь на аксон. Последовательно формирующиеся слои плазматической мембраны располагаются друг напротив друга и, «вытесняя» цитоплазму, образуют главную (крупную) и межпромежуточную (мелкую) плотные линии миелиновой оболочки.

В области конечных участков миелинизированных сегментов аксона по обеим сторонам от перехватов Ранвье (промежутков между конечными участками соседних шванновских клеток) расположены паранодальные карманы.


Поперечный срез нервного ствола.
(А) Световая микроскопия. (Б) Электронная микроскопия.
Миелинизация в периферической нервной системе.
Стрелками указано направление накручивания цитоплазмы шванновской клетки.

1. Миелин ускоряет проведение импульсов . По аксонам немиелинизированных нервных волокон проведение импульса осуществляется непрерывно со скоростью около 2 м/с. Поскольку миелин выполняет функцию электроизолятора, возбудимая мембрана миелинизированных нервных волокон ограничена перехватами Ранвье. В связи с этим возбуждение распространяется от одного перехвата к другому сальтаторно - «скачкообразно», обеспечивая значительно большую скорость проведения нервного импульса, достигающую значений 120 м/с. Количество импульсов, проводимых за секунду, значительно выше у миелинизированных нервных волокон по сравнению с немиелинизированными.

Следует отметить, что чем крупнее миелинизированное нервное волокно, тем длиннее его межузловые сегменты, в связи с чем нервные импульсы, «делая большие шаги», распространяются с большей скоростью. Для описания зависимости между размером нервного волокна и скоростью проведения импульсов можно использовать «правило шести»: скорость распространения нервных импульсов по волокну, диаметр которого составляет 10 нм (включая толщину миелинового слоя), составляет 60 м/с, а по волокну диаметром 15 нм - 90 м/с и т. д.

С точки зрения физиологии периферические нервные волокна классифицируют по скорости проведения нервных импульсов, а также по другим критериям. Двигательные нервные волокна разделяют на типы А, В и С в соответствии с уменьшением скорости проведения импульсов. Чувствительные нервные волокна разделяют на группы I-IV по такому же принципу. Однако на практике эти классификации взаимозаменяемы: так, например, немиелинизированные чувствительные нервные волокна относят не к типу С, а к группе IV.

Подробная информация о диаметрах и местах локализации периферических нервных волокон представлена в таблицах ниже.


На электронно-микроскопическом изображении показаны миелинизированное периферическое нервное волокно и окружающая его шванновская клетка. На рисунках ниже представлена группа немиелинизированных нервных волокон, погруженных в цитоплазму шванновской клетки и продемонстрирован участок перехвата Ранвье аксона ЦНС.

б) Область перехода центральной нервной системы в периферическую нервную систему . В области моста мозга и спинного мозга периферические нервы входят в переходную зону между центральной и периферической нервной системой. Отростки астроцитов из ЦНС погружаются в эпиневрий корешков периферических нейронов и «переплетаются» со шванновскими клетками. Астроциты немиелинизированных волокон погружаются в пространство между аксонами и шванновскими клетками. Перехваты Ранвье миелинизированных нервных волокон в периферической части окружаются миелином шванновских клеток (демонстрируя некоторые переходные свойства), а в центральной части - миелином олигодендроцитов.

в) Резюме . Стволы спинномозговых нервов проходят в межпозвоночных отверстиях. Эти структуры образуются при соединении вентральных (двигательных) и дорсальных (чувствительных) нервных корешков и разделяются на смешанные вентральные и дорсальные ветви. Нервные сплетения конечностей представлены вентральными ветвями.

Периферические нервы покрыты эпиневральной соединительной тканью, пучковидной периневральной оболочкой и эндоневрием, образованным коллагеновыми волокнами и содержащим шванновские клетки. Миелинизированное нервное волокно включает аксон, миелиновую оболочку и цитоплазму шванновской клетки - нейролемму. Миелиновые оболочки формируются шванновскими клетками и обеспечивают сальтаторное проведение импульсов со скоростью, прямо пропорциональной диаметру нервного волокна.



а - Миелинизированное нервное волокно. Десять слоев миелина окружают аксон от внешнего к внутреннему мезаксону шванновской клетки (указано стрелками). Базальная мембрана окружает шванновскую клетку.
б - Немиелинизированные нервные волокна. Девять немиелинизированных волокон погружены в цитоплазму шванновской клетки. Мезаксоны (некоторые указаны стрелками) визуализируются при полном погружении аксонов.
Два неполностью погруженных аксона (сверху справа) покрыты базальной мембраной шванновской клетки.
Область перехвата Ранвье ЦНС. Доходя до области перехвата Ранвье, миелиновая оболочка сужается и заканчивается, закручиваясь в области паранодальных карманов цитоплазмы олигодендроцита.
Длина области перехвата Ранвье составляет около 10 нм; на этом участке отсутствует базальная мембрана.
Микротрубочки, нейрофиламенты и удлиненные цистерны гладкой эндоплазматической сети (ЭПС) формируют продольные пучки.

Область перехода центральной нервной системы (ЦНС) в периферическую нервную систему (ПНС).