Что такое сила электрического тока. Что такое сила тока

Мы помним из уроков физики средней школы основной постулат. Выглядит он следующим образом.

Силой тока называется величина, которая количественно характеризует упорядоченное движение заряженных частиц

Чтобы понять это определение, нужно для начала выяснить, что такое «упорядоченное движение заряженных частиц». Это как раз и есть электрический ток. Таким образом, сила тока позволяет численно измерить электрический ток.

Например, заданное количество электрических зарядов может проходить по проводнику в течение 1 часа или 1 секунды. Понятно, что во втором случае интенсивность прохождения зарядов будет гораздо больше. Соответственно и сила тока будет больше. Так как в международной системе СИ единицей времени принято считать 1 секунду, то приходим к определению силы тока.

Сила тока — это количество электричества, проходящее через поперечное сечение проводника за одну секунду.

Единица силы тока

Единицей измерения силы тока является Ампер . Ампер — сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Дополнительные единицы измерения, наиболее часто встречающиеся в энергетике:

  • 1 мА (миллиампер) = 0,001 А;
  • 1 мкА (микроампер) = 0,000001 А;
  • 1 кА (килоампер) = 1000 А.

Теперь мы знаем, в чем измеряется сила тока.

Измерение силы тока

Для измерения силы тока служит прибор Амперметр . Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры.

Условные обозначения амперметра и миллиамперметра

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи, то есть последовательно. Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр в цепи — безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Прибор амперметр

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера).

Например, сила тока электрической плитки примерно 4 — 5 ампер, лампы накаливания — от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

Ремонт бытовой техники и электропроводки своими руками требует от домашнего мастера понимания физических процессов электричества. Но среди практиков встречается категория “забывчивых” людей.

Специально для напоминания им, а не только ученикам школ, я подготовил материал о том, как создается сила тока в проводнике и других различных средах.

Постарался изложить его немного упрощенным и понятным языком без сложных формул и выводов, но подробно. Читайте, знакомьтесь, вспоминайте.

При каких условиях возникает электрический ток и что такое сила тока простыми словами

Сразу обращаю внимание: определение электрического тока не относится к статическим, замершим явлениям. Оно напрямую связано с движением,динамическим состоянием.

Его создают не нейтральные, а активные частицы положительного или отрицательного электрического заряда.

И перемещаться они должны не хаотически, как жители мегаполиса во время часа пик, а направленно. Пример: движение массы автомобилей по многорядной дороге в одном направлении большого города.

Представили картину? Внутрь сплошного потока добавляются машины со стороны, какие-то водители съезжают с трассы на другие дороги. Но на общее движение эти процессы не особо влияют: направление сохраняется односторонним.

Так же происходит перемещение электрических зарядов. Внутри металлических проводников ток создают электроны. В обычном состоянии они там движутся довольно хаотически во все стороны.

Но стоит приложить к ним внешнюю с положительными и отрицательными потенциалами на противоположных концах проводника, как начинается направленное движение зарядов.

Оно и является электрическим током. Обращаю внимание на последнее слово. Оно характеризует течение, перемещение, движение, динамику и связанные сними процессы, но не статику.

Именно величина приложенной внешней силы определяет качество направленного потока электронов в одну сторону. Чем выше ее значение, тем большая сила тока начинает протекать через проводник.

Однако здесь требуется учитывать несколько особенностей,связанных с:

  • общепринятыми научными условностями;
  • интенсивностью движения зарядов;
  • Противодействием внутренней среды проводника.

В первом случае нам приходится преодолевать сложившиеся исторические стереотипы, когда люди смешивают общее направление электронов и электрического тока.

Все научные расчеты построены на том, что за направление тока взято движение заряженных частиц от плюса источника напряжения к его минусу.

Внутри металлов электрический ток
создается за счет перемещения электронов в обратную сторону: они отталкиваются от одноименного минусового полюса и движутся к положительному.

Недопонимание этого положения может привести к ошибкам. Но их просто избежать: достаточно только запомнить эту особенность и использовать при расчетах или анализе действий электрических схем.

Интенсивность движения заряженных частиц характеризуют количеством их заряда, протекающего через заданную площадь за определённый промежуток времени.

Ее называют силой тока, обозначают латинской буквой I, вычисляют отношением ∆Q/∆t.

Здесь ∆Q - это количество зарядов, проходящих сквозь проводник с площадью S и длиной ∆L, а ∆t - калиброванный промежуток времени.

Для увеличения силы тока нам необходимо повысить число зарядов, проходящих через проводник за единицу времени, а для снижения - уменьшить.

Опять же присмотритесь к термину “сила тока”, вернее к его первому слову. Я специально на самой верхней картинке показал для сравнения мощный бицепс и тлеющую лампочку.

Силовой запас источника энергии может колебаться от излишнего до недостаточного для потребителя. А нам всегда требуется питать нагрузку оптимально. Для этого и введено понятие силы тока.

Чтобы ее оценивать используется единица системы измерения: ампер, обозначаемая латинской буквой A.

Теоретически, чтобы оценить 1 ампер необходимо:

  • взять два очень тонких, бесконечно длинных и совершенно ровных проводника;
  • разместить их на плоскости строго параллельно друг другу на расстоянии 1 метр;
  • пропускать по ним одинаковый ток, постепенно повышая его величину;
  • замерять силу притяжения проводов и зафиксировать момент, когда она достигнет значения 2×10-7 Ньютона.

Вот тогда и станет протекать в проводах 1 ампер.

На практике никто так не поступает. Для измерения созданы специальные приборы: амперметры. Их конструкции работают в размерах дольности и кратности: мили-, микро- и кило-.

Еще одно определение ампера связано с единицей количества электричества: кулоном (Кл), который проходит сквозь поперечное сечение провода за 1 секунду.

Сила тока в любом месте замкнутой электрической цепи, где он протекает, всегда одинакова , а при ее разрыве, где бы ни было, исчезает.

Это явление позволяет выполнять замеры в самых удобных местах любой электрической схемы.

Когда создается сложная разветвленная цепь для протекания нескольких токов, то последние тоже на всех отдельных участках остаются постоянными.

Третий случай противодействия среды тоже важен. Электроны в процессе движения сталкиваются с препятствиями в виде положительно и отрицательно заряженных частиц.

Такие столкновения связаны с затратами энергии, расходуемой на выделение тепла. Их обобщили термином и описали физическими законами в математической форме.

Внутренняя структура каждого металла оказывает различное противодействие протеканию тока. Наука давно изучила эти свойства и свела в таблицы, графики и формулы удельного электрического сопротивления.

При проведении расчетов нам остается только воспользоваться уже проверенными и подготовленными сведениями. Их можно выполнять на основе формул, представленных известной шпаргалкой электрика.

Но намного проще использовать онлайн калькулятор Закона Ома. Он позволит избежать совершения типичных математических ошибок.

Самые важные выводы из формул силы тока для домашнего мастера

Практическую пользу представляет только полное понимание процессов протекания тока по проводникам. В быту мы должны:

  1. Заранее предусмотреть токовые нагрузки на проводку. Эти сведения помогут грамотно спроектировать ее для прокладки внутри своей квартире. А если она уже проложена, то потребуется учитывать и не превышать подключаемые мощности.

  • Исключить типовые ошибки монтажа проводов и оборудования, на которых происходит бесполезная потеря энергии электричества,создается излишний нагрев, возникают повреждения.

  • Правильно эксплуатировать проводку.

  • Предусмотреть систему защит, которые автоматически предохранят бытовую сеть от возникновения случайных повреждений как внутри схемы, так и приходящих со стороны питания.

Сейчас я не стану более подробно расшифровывать каждый из этих четырех пунктов. У меня в планах расписать их для вас более подробно сериями статей, опубликовать в рубриках сайта. Следите за информацией или подписывайтесь на рассылку, дабы быть в курсе.

Какие бывают виды электрического тока в быту

Форма сигнала токов зависит от работы источника напряжения и сопротивления среды, через которую проходит сигнал. Чаще всего на практике домашнему мастеру приходится сталкиваться со следующим видами:

  • постоянный сигнал, вырабатываемый от аккумуляторов или гальванических элементов;
  • синусоидальный, создаваемый промышленными генераторами частоты 50 герц;
  • пульсирующий, образуемый за счет преобразований различных блоков питания;
  • импульсный, проникающий в бытовую сеть за счет разряда молний в воздушные линии электропередач;
  • произвольный.

Чаще всего встречается синусоидальный или переменный ток: им питаются все наши приборы.

Электрический ток в различных средах: что надо знать электрику

Заряженные частицы под действием приложенного напряжения перемещаются не только внутри металлов, как мы разобрали выше на примере электронов, но и в:

  • переходном слое полупроводниковых элементов;
  • жидкостях различных составов;
  • среде газа;
  • и даже внутри вакуума.

Все эти среды оценивают способностью пропускать ток термином, называемым проводимостью. Это величина, обратная сопротивлению. Она обозначается буквой G, оценивается через удельную проводимость, которую можно найти в таблицах.

Проводимость вычисляется по формулам:

Сила тока в проводнике из металла: как используется в бытовых условиях

Способность внутренней структуры металлов по-разному влиять на условия движения направленных зарядов применяется для реализации специфических задач.

Транспортировка электрической мощности

Чтобы передать электрическую энергию на большое расстояние используют металлические проводники повышенного сечения с высокой проводимостью: медь или алюминий. Более дорогие металлы серебро и золото работают внутри сложных электронных схемах.

Всевозможные конструкции проводов, шнуров и кабелей на их основе надежно эксплуатируются в домашней проводке.

Нагревательные элементы

Для обогревательных приборов применяют вольфрам и нихром,обладающие большим сопротивлением. Оно позволяет разогревать проводник до высоких температур при правильном подборе приложенной мощности.

Этот принцип воплотился в многочисленных конструкциях электрических нагревателей - ТЭН-ах.

Защитные устройства

Завышенная сила тока в проводнике из металла с хорошей проводимостью, но тонким сечением позволяет создавать предохранители,используемые как токовые защиты.

Они нормально работают в оптимальном режиме нагрузки, но быстро перегорают при бросках напряжения, коротких замыканиях или перегрузках.

Еще несколько десятков лет предохранители массово служили основной защитой домашней проводки. Сейчас их заменили автоматическими выключателями. Но внутри всех блоков питания они продолжают надежно работать.

Ток в полупроводниках и его характеристики

Электрические свойства полупроводников сильно зависят от внешних условий: температуры, облучения светом.

Для увеличения их собственной проводимости в состав структуры добавлены специальные примеси.

Поэтому внутри полупроводника ток создается за счет собственной и примесной проводимости внутреннего p-n перехода.

Носителями зарядов полупроводника выступают электроны идырки. Если плюсовой потенциал источника напряжения приложен к полюсу p, а минусовой - к n, то через p-n переход станет течь ток за счет созданного ими движения.

При обратном приложении полярности p-n переход остается закрытым. Поэтому на картинке выше в первом случае показана светящаяся лампочка, а во втором - потухшая.

Аналогичные p-n переходы работают в других полупроводниковых конструкциях: транзисторах, стабилитронах, тиристорах…

Все они рассчитаны на номинальное прохождение силы тока. Для этого прямо на их корпус наносится маркировка. По ней заходят в таблицы технических справочников и оценивают полупроводник по электрическим характеристикам.

Ток в жидкостях: 3 метода применения

Если металлы обладают хорошей проводимостью, то среда жидкостей может выступать как диэлектрик, проводник и даже полупроводник. Но, последний случай не для домашнего применения.

Изоляционные свойства

Высокими диэлектрическими свойствами обладает минеральное масло высокой степени очистки и заниженной вязкости, созданное для работы внутри промышленных трансформаторах.

Дистиллированная вода тоже имеет высокие изоляционные свойства.

Аккумуляторы и гальванопластика

Если в дистиллированную воду добавить немного соли, кислоты или щелочи, то она, за счет возникновения электролитической диссоциации, станет токопроводящей средой - электролитом.

Однако здесь надо понимать: ток, протекающий в металлах, не нарушает структуру их вещества. В жидкостях же происходят разрушительные химические процессы.

Ток в жидкостях так же создается под действием приложенного напряжения. Например, когда к двум электродам, опущенным в водный раствор какой-то соли, подведены положительные и отрицательные потенциалы от батарейки или аккумулятора.

Молекулы раствора образуют положительно и отрицательно заряженные частицы - ионы. По знаку заряда их называют анионы (+) и катионы (-).

Под действием приложенного электрического поля анионы и катионы начинают движение к электродам противоположных знаков: катоду и аноду.

Такое встречное движение заряженных частиц образует электрический ток в жидкостях. При этом ионы, дойдя до своего электрода,разряжаются на нем и образуют осадок.

Наглядным примером могут быть гальванические процессы,проходящие в растворе медного купороса CuSO4 с опущенными в него медными электродами.

Ионы меди Cu заряжены положительно - это анионы. На катоде они теряют свой заряд и оседают тонким металлическим слоем.

Катионами выступает кислотный остаток SO4. Они приходят на анод, разряжаются, вступают в химическую реакцию с медью электрода, образуют молекулы медного купороса, поступают обратно в раствор.

По этому принципу за счет ионной проводимости работают все электролиты в гальванопластике, когда идет изменение структуры электродов, а состав жидкости не меняется.

С помощью этого метода создают тонкие покрытия из благородных металлов на ювелирных украшениях или защитный слой различных деталей от коррозии. Силу тока подбирают под скорость протекания химической реакции в зависимости от конкретных условий среды.

По этой же схеме работают все аккумуляторные батареи. Только они еще обладают возможностью накапливать заряд от приложенной энергии генератора и отдают электричество при разряде на потребитель.

Работу никель кадмиевого аккумулятора в режиме заряда от внешнего генератора и разряда на приложенную нагрузку демонстрирует простая схема.

Ток в газах: диэлектрические свойства среды и условия протекания разрядов

Обычная газовая среда обладает хорошими диэлектрическими свойствами: она состоит из нейтральных молекул и атомов.

Примером может служить воздушная атмосфера. Ее используют как изолирующий материал даже на высоковольтных линиях электропередач, передающих очень большие мощности.

Оголенные металлические провода закреплены на опоре через изоляторы и отделены от контура земли их высоким электрическим сопротивлением,а между собой - обычным воздухом. Так работают ВЛ всех напряжений, включая 1150кВ.

Однако диэлектрические свойства газов могут быть нарушены за счет воздействия внешней энергии: нагрева до большой температуры или приложения повышенной разности потенциалов. Только тогда происходит ионизация их молекул.

Она отличается от тех процессов, которые происходят внутри жидкостей. У электролитов молекулы расщепляются на две части: анионы и катионы.Молекула же газа во время ионизации выделяет электрон и остается в виде иона положительного заряда.

Как только внешние силы, создающие ионизацию газов,прекращают действовать, сразу исчезает проводимость газовой среды. Разряд молнии в воздухе является кратковременным явлением, подтверждающим это положение.

Ток в газах, кроме разряда молнии, может создаваться за счет поддержания электрической дуги. По этому принципу работают прожектора и проекционные аппараты яркого света, а также промышленные дуговые печи.

Неоновые и люминесцентные лампы используют свечение тлеющего разряда, протекающего в среде газа.

Еще один вид разряда в газах, применяемый в технике -искровой. Он создается газовыми разрядниками для замера величин больших потенциалов.

Ток в вакууме: как используется в радиоэлектронных приборах

Латинское слово вакуум трактуется на русском языке как пустота. Она создается практическим путем за счет откачки газов из закрытого пространства вакуумными насосами.

Носителей электрических зарядов в вакууме нет. Их необходимо внести в эту среду для того, чтобы создать ток. Здесь используется явление термоэлектронной эмиссии, которая возникает при нагреве металла.

Таким способом работают радиоэлектронные лампы, у которых катод подогревается нитью накала. Освобождающиеся из него электроны, под действием приложенного напряжения, движутся к аноду, образуют ток в вакууме.

По этому же принципу создана электронно лучевая трубка кинескопного телевизора, монитора, осциллографа.

Просто в ней добавлены управляющие электроды для отклонения луча и экран, указывающий на его положение.

Во всех перечисленных устройствах сила тока в проводнике среды должна рассчитываться, контролироваться и поддерживаться на определённом уровне оптимального режима.

На этом заканчиваю. Специально для вас сделан раздел комментариев. Он позволяет просто высказывать собственное мнение о прочитанной статье.

Содержание:

Движение заряженных частиц в проводнике в электротехнике называется электрическим током. Электроток не характеризуется только прошедшим через проводник значением количества электрической энергии, так как за 60 минут через него может пройти электричество равное 1 Кулону, но и такое же количество электричества можно пропустить через проводник за одну секунду.

Что такое сила тока

Когда рассматривается количество электричества, протекающее через проводник за разные интервалы времени, понятно, что за меньший промежуток времени ток течет интенсивней, поэтому в характеристику электротока вводится еще одно определение - это сила тока, которая характеризуется протекающим в проводнике током за секунду времени. Единицей измерения величины силы проходящего тока в электротехнике принят ампер.

Иными словами, сила электрического тока в проводнике - это количество электричества, которое прошло через его сечение за секунду времени, маркировка литерой I. Силу тока измеряют в амперах - это единица измерения, которая равняется силе неизменяющегося тока, проходящего по бесконечным параллельным проводам с наименьшим круговым сечением, удаленным друг от друга на 100 см и расположенным в вакууме, который вызывает взаимодействие на метре длины проводника силой = 2*10 минус 7 степени Ньютона на каждые 100 см длины.

Специалисты часто определяют величину проходящего тока, на Украине (сила струму) она равна 1 амперу, когда через сечение проводника проходит каждую секунду 1 кулон электричества.

В электротехнике можно увидеть частое применение других величин в определении значения силы проходящего тока: 1 миллиампер, который равен единица/ Ампер, 10 в минус третьей степени Ампер, один микроампер - это десять в минус шестой степени Ампер.

Зная количество электричества, прошедшее через проводник за определенный промежуток времени, можно вычислить силу тока (как говорят на Украине - силу струму) по формуле:

Когда электрическая цепь замкнута и не имеет ответвлений, тогда в каждом месте ее поперечного сечения протекает за секунду одинаковое количество электричества. Теоретически это объясняется невозможностью накапливания электрических зарядов в каком либо месте цепи, по этой причине сила тока везде одинакова.

Данное правило справедливо и в сложных цепях, когда есть ответвления, но относится к некоторым участкам сложной цепи, которые можно рассматривать в виде простой электроцепи.

Как измеряется сила тока

Величину силы тока измеряют прибором, который называется амперметр, а также для небольших значений - миллиамперметр и микроамперметр, который можно увидеть на фото внизу:

Среди людей бытует мнение, что когда измеряется сила тока в проводнике до нагрузки (потребителя), то значение будет выше, чем после нее. Это ошибочное мнение, основанное на том, что якобы какое-то значение силы будет расходоваться на то, чтобы привести потребитель в действие. Электроток в проводнике - это процесс электромагнитный, в котором участвуют заряженные электроны, они направленно двигаются, но энергию передают не электроны, а электромагнитное поле, которое окружает проводник.

Количество электронов, вышедших из начала цепи, будет равно количеству электронов и после потребителя в конце цепи, они не могут быть израсходованы.

Какие проводники бывают? Специалисты дают определение понятию «проводник» - это материал, в котором частицы, имеющие заряд, могут перемещаться свободно. Такие свойства на практике имеют почти все металлы, кислота и солевой раствор. А материал или вещество, в котором движение заряженных частиц затруднено или вообще невозможно, называются изоляторами (диэлектриками). Часто встречающиеся материалы-диэлектрики - это кварц или эбонит, искусственный изолятор.

Вывод

На практике современное оборудование работает с большими величинами тока, до сотни, а то и тысячи ампер, а также и с малыми значениями. Примером в повседневной жизни величины тока в разных приборах может быть электрическая плита, где она достигает значения в 5 А, а простая лампа накаливания может иметь величину 0,4 А, в фотоэлементе величина проходящего тока измеряется в микроамперах. В линиях городского общественного транспорта (троллейбус, трамвай) значение проходящего тока достигает 1000 А.

Электрический ток представляет собой направленное движение электрических зарядов. Величина тока определяется количеством электричества, проходящего через поперечное сечение проводника в единицу времени.

Одним количеством электричества, проходящим по проводнику, мы еще не можем полностью охарактеризовать электрический ток. Действительно, количество электричества, равное одному кулону, может проходить по проводнику в течение одного часа, и тоже самое количество электричества может быть пропущено по нему в течение одной секунды.

Интенсивность электрического тока ко втором случае будет значительно больше, чем в первом, так как то же самое количество электричества проходит в значительно меньший промежуток времени. Для характеристики интенсивности электрического тока количество электричества, проходящее по проводнику, принято относить к единице времени (секунде). Количество электричества, проходящее по проводнику в одну секунду, называется силой тока. В качестве единицы силы тока в системе принят ампер (а).

Сила тока - количество электричества, проходящее через поперечное сечение проводника в одну секунду.

Сила тока обозначается английской буквой I .

Ампер - единица силы электрического тока (одна из ), обозначается А. 1 А равен силе не изменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового сечения, расположенным на расстоянии 1 м один от другого в вакууме, вызвал бы на участке проводника длиной 1 м силу взаимодействия, равную 2 10 –7 Н на каждый метр длины.

Сила тока в проводнике равна одному амперу, если ежесекундно через поперечное сечение его проходит один кулон электричества.

Ампер - сила электрического тока, при котором через поперечное сечение проводника каждую секунду проходит количество электричества, равное одному кулону: 1 ампер = 1 кулон/1 секунду.

Часто применяют вспомогательные единицы: 1 миллиампер (ма) = 1/1000 ампер = 10 -3 ампер, 1 микроампер (мка) = 1/1000000 ампер = 10 -6 ампер.

Если известно количество электричества, прошедшее через сечение проводника за некоторый промежуток времени, то силу тока можно найти по формуле: I=q/t

Если в замкнутой цепи не имеющей разветвлений, проходит электрический ток, то через любое поперечное сечение (в любом месте цепи) проходит в секунду одно и тоже количество электричества, независимо от толщины проводников. Это объясняется тем, что заряды не могут накапливаться в каком-нибудь месте проводника. Следовательно, сила тока в любом месте электрической цепи одинакова.

В сложных электрических цепях с различными ответвлениями это правило (постоянство тока во всех точках замкнутой цепи) остается, конечно, справедливым, но оно относится только к отдельным участкам общей цепи, которые могут рассматриваться как простые.

Измерение силы тока

Для измерения силы тока служит прибор, который называется амперметром. Для измерения очень малых сил тока применяются миллиамперметры и микроамперметры, или гальванометры. На рис. 1. показано условное графическое изображение амперметра и миллиамперметра на электрических схемах.

Рис. 1. Условные обозначения амперметра и миллиамперметра

Рис. 2. Амперметр

Для того, чтобы измерит силу тока нужно включить амперметр в разрыв цепи (см. рис. 3). Измеряемый ток проходит от источника через амперметр и приемник. Стрелка амперметра показывает силу тока в цепи. Где именно включить амперметр, т. е. до потребителя (считая ) или после него, совершенно безразлично, так как сила тока в простой замкнутой цепи (без разветвлений) будет одинакова во всех точках цепи.

Рис. 3. Включение амперметра

Иногда ошибочно считают, что амперметр, включенный до потребителя, будет показывать большую силу тока, чем включенный после потребителя. В этом случае считают, что «часть тока» тратится в потребителе для приведения его в действие. Это, конечно, неверно, и вот почему.

Электрический ток в металлическом проводнике представляет собой электромагнитный процесс, сопровождаемый упорядоченным движением электронов по проводнику. Однако энергия переносится не электронами, а электромагнитным полем, окружающим проводник.

Через любое поперечное сечение проводников простой электрической цепи проходит в точности одно и то же количество электронов. Какое количество электронов вышло от одного полюса источника электрической энергии, такое же количество их пройдет через потребитель и, конечно, поступит к другому полюсу, источника, ибо электроны как материальные частички израсходоваться при своем движении не могут.

Рис. 4. Измерение силы тока с помощью мультиметра

В технике встречаются очень большие силы тока (тысячи ампер) и очень маленькие (миллионные доли ампера). Например, сила тока электрической плитки примерно 4 - 5 ампер, лампы накаливания - от 0,3 до 4 ампер (и больше). Ток, проходящий через фотоэлементы, составляет всего несколько микроампер. В главных проводах подстанций, дающих электроэнергию для трамвайной сети, сила тока достигает тысяч ампер.

Невозможно. Понятие о токе является основой, на которой, словно дом на надежном фундаменте, выстраиваются дальнейшие расчеты электроцепей и приводятся новые и новые определения. Сила тока представляет собой одну из величин международной поэтому универсальной единицей измерения является Ампер (А).

Физический смысл данной единицы поясняют следующим образом: сила тока в один ампер возникает при движении обладающих зарядом частиц по двум проводникам бесконечной протяженности, между которыми промежуток в один метр. При этом возникающая на каждом метровом участке проводников численно равна 2*10 в степени -7 Ньютон. Обычно добавляют, что проводники расположены в вакууме (что позволяет нивелировать влияние промежуточной среды), а их сечение стремится к нулю (при этом проводимость максимальна).

Однако, как это обычно бывает, классические определения понятны лишь специалистам, которым, по сути, уже не интересны азы. А вот незнакомый с электричеством человек «запутается» еще больше. Поэтому поясним, что такое сила тока, буквально «на пальцах». Представим обыкновенную батарейку, от полюсов которой к лампочке идут два изолированных провода. В разрыв одного провода подключен выключатель. Как известно из начального курса физики, электрический ток - это движение частиц, обладающих собственным Обычно ими принято считать электроны (действительно, именно электрон обладает единичным отрицательным зарядом), хотя на самом деле все немного сложнее. Данные частицы характерны для проводящих материалов (металлы), а вот в газовых средах дополнительно переносят заряд ионы (вспоминаем термины «ионизация» и «пробой воздушного промежутка»); в полупроводниках проводимость не только электронная, но и дырочная (положительный заряд); в электролитических растворах проводимость чисто ионная (например, автомобильные аккумуляторы). Но вернемся к нашему примеру. В нем ток формирует движение именно свободных электронов. Пока выключатель не включен, цепь разомкнута, частицам двигаться некуда, следовательно, сила тока равна нулю. Но стоит «собрать схему», как электроны устремляются от отрицательного полюса батарейки к положительному, проходя через лампочку и вызывая ее свечение. Сила, заставляющая их двигаться, происходит от электрического поля, создаваемого батарейкой (ЭДС - поле - ток).

Сила тока - это отношение заряда ко времени. То есть фактически речь идет о количестве электричества, проходящего по проводнику за условную единицу времени. Можно привести аналогию с водой: чем сильнее открыт кран, тем больший объем воды пройдет по трубопроводу. Но если воду измеряют литрами (кубометрами), то ток - количеством носителей заряда или, что также верно, амперами. Вот так все просто. Нетрудно понять, что увеличить силу тока можно двумя способами: убрав из цепи лампочку (сопротивление, препятствие движению), а также повысив создаваемое батарейкой электрическое поле.

Собственно, мы подошли к тому, как в общем случае выполняется расчет силы тока. Существует много формул: например, для полной цепи, учитывающей влияние характеристик источника питания; для переменного и для многофазных систем и пр. Однако всех их объединяет единое правило - знаменитый закон Ома. Поэтому приведем его общий (универсальный) вид:

где I - ток, в Амперах; U - напряжение на выводах источника питания, в Вольтах; R - сопротивление цепи или участка, в Омах. Эта зависимость лишь подтверждает все вышесказанное: увеличения тока можно добиться двумя способами, через сопротивление (наша лампочка) и напряжение (параметр источника).