Путь к долгой жизни. Перспективы использования ингибиторов теломеразы в противоопухолевой терапии

Самым обсуждаемым в последние годы способом борьбы со старением оказались вовсе не пластические операции, а новинка из области генетики - активатор теломеразы ТА-65. С 2013 года этот препарат появился на российском рынке. О том, как стареет человеческий организм и о том, как можно замедлить и обратить вспять этот процесс, по просьбе сайт рассказывает Галина Орлова, генеральный директор «Теломерейс Активейшн Сайенсес», врач-гинеколог:

  • ООО «Теломерейс Активейшн Сайенсес» - российская компания, основанная в 2011 году, являющаяся официальным эксклюзивным дистрибьютером в России и СНГ.

Галина, мы знаем, что ученые бьются над проблемой старения уже тысячи лет. Можно ли говорить о том, что современная наука достоверно разобралась в причинах этого процесса?

Мы начинаем стареть с момента нашего зачатия. Клетки приступают к делению сразу, как только начинают формироваться органы и ткани. Мы рождаемся, взрослеем, затем приходит период увядания - наши органы и ткани изнашиваются, стареет кожа, ощущается недостаток физических сил. Существует множество теорий старения, три основных продемонстрированы в таблице:

Теория
В чем суть?
Цель корректирующих мероприятий
Свободно-радикальная В процессе старения увеличивается количество свободных радикалов, приводящих к окослительному стрессу, повреждающему жизненно важные макромолекулы Борьба с окислительным стрессом
Эндокринная (Дильмана) Морфологические и функциональные изменения в органах происходят в связи с дефицитом гормонов, среди которых наиболее значим дефицит половых гормонов Устранение гормонального дефицита
Теломерная При каждом делении клетки теломеры сокращаются, достигая в определенный момент критического уровня, при котором клетка больше не может делиться - она стареет либо умирает Восстановление длины критически коротких теломер, предотвращение их эрозии

Основная и связующая для всех теорий - теломерная, изучать которую начали еще в середине прошлого столетия. В 1961 году ученый по фамилии Хейфлик установил, что клетка может делиться лишь строго определенное количество раз. Этот лимит в дальнейшем получил название «лимит Хейфлика ». Клетку, которая перестала делиться, то есть стала сенесцентной (престарелой), ждут три варианта развития событий:

  • первый - впасть в анабиотическое состояние, когда клетка и не живет и не умирает, выделяя продукты жизнедеятельности;
  • второй вариант - это умереть или окончить жизнь самоубийством (апоптоз);
  • и третий вариант - мутировать и переродиться в раковую. То есть, когда клетка становится старой, один из главных рисков - развитие ракового процесса.

С нами происходит то же самое, что и с клеткой. Когда мы становимся старыми, мы можем впасть в неактивное состояние, заболеть раком или умереть. Чем старше мы становимся, тем выше риск каждого из этих исходов.

Отчего же зависит продолжительность жизни клетки? Почему она перестает делиться?

Всем известно, что внутри клетки находится ядро, а внутри ядра - хромосомы, своеобразные сейфы с генетической информацией. Ученые открыли, что на концах каждой хромосомы есть теломеры - особые образования, которые не несут генетической информации, а выполняют защитную функцию.

Теломеры играют важную роль в процессе деления клетки - они обеспечивают стабильность генома:

  • защищают хромосомы от деградации и слияния в процессе репликации;
  • обеспечивают структурную целостность окончаний хромосом;
  • защищают клетки от мутаций, старения и смерти.

Именно длина теломер и определяет биологический возраст человека. Ученые выяснили, что клетка перестает делиться в тот момент, когда длина хотя бы одной теломеры достигает предельно короткой величины. Природа все создала умно: чтобы уберечь наш геном и предотвратить возможные мутации, клетка перестает делиться именно тогда, когда кончается защита.

При этом, состояние теломер определяет не только продолжительность жизни одной клетки, но и состояние органов, систем и организма в целом. Люди с короткими теломерами быстро устают, теряют жизненные силы, у них рано появляются морщины, часто возникают простудные заболевания, повышен риск получения сердечно-сосудистых патологий, канцерогенеза, заболеваний репродуктивной системы, органов зрения и других возрастных недугов.

Какие заболевания развиваются у людей с короткими теломерами в первую очередь?

Наиболее распространенными являются болезни сердечно-сосудистой системы. У лиц с короткими теломерами в 3 раза выше риск внезапной смерти от сердечного приступа и развития болезней коронарных артерий. Выявлена также взаимосвязь коротких теломер с развитием артериальной гипертензии и хронической сердечной недостаточности.

Существует множество доказательств того, что укорочение теломер связано с развитием рака. У пациентов с дискератозом (врожденная патология - «болезнь коротких теломер») в 1000 раз повышен риск развития рака языка и примерно в 200 раз - риск развития острой миелоидной лейкемии. Кроме того, врожденный дискератоз вызывает преждевременное старение кожи. При анемии для пациентов с наиболее короткими теломерами в 4-5 раз повышен риск трансформации заболевания в миелодисплазию или лейкемию.

Лишенные теломер концевые участки хромосом выявляются в клетках костного мозга пациентов за годы до появления клинических симптомов. Кроме того, имеются данные о взаимосвязи между длиной теломер и риском развития слабоумия и сахарного диабета.

А существуют ли способы вернуть коротким теломерам исходную длину?

Именно такой вопрос был поставлен учеными сразу после обнаружения взаимосвязи между старением и длиной теломер. В 1971 году советский ученый Алексей Матвеевич Оловников предположил, что в организме человека есть не только теломеры, но и фермент, который может их наращивать - он получил название теломераза. В период с 1985 по 2005 год трое американских ученых - Элизабет Блекберн, Кэрол Грейдер и Джек Шостак - обнаружили теломеразу и доказали, что она способна наращивать теломеры. В 2009 году это открытие было удостоено Нобелевской премии.

Однако, судя по всему, теломераза активна далеко не всегда? Иначе проблема старения не стояла бы перед человеком столь остро?

Этот фермент есть в организме каждого из нас, но в большинстве клеток он «дремлет»или имеет низкую активность, которая еще более затухает с возрастом. Но есть исключения. В половых клетках человека(сперматозоиды и яйцеклетки) высокая теломеразная активность наблюдается в течение всей его жизни. Аналогично и в стволовых клетках, которые способны делиться неограниченно долго. Более того, у стволовой клетки всегда есть возможность дать две дочерние клетки, одна из которых останется стволовой ("бессмертной"), а другая вступит в процесс дифференцировки (приобретет свое функциональное предназначение в организме). Именно поэтому они являются постоянным источником разнообразных клеток организма.

Как только потомки половых или стволовых клеток начинают дифференцироваться, активность теломеразы падает и их теломеры начинают укорачиваться. В клетках, дифференцировка которых завершена, активность теломеразы падает до нуля, и с каждым клеточным делением они с неизбежностью приближаются к моменту, когда навсегда перестанут делиться. Вслед за этим наступает кризис и большинство клеток погибают.

Активность теломеразы рассматривается как возможный маркер физиологического резерва организма. А длина теломер - это «клеточные часы»,ограничивающие число возможных делений клетки, а значит и продолжительность ее здоровой жизни. Нобелевский лауреат 2009 года Элизабет Блэкберн предположила, что теломераза, помимо удлинения концов теломер, защищает их структуру, нарушение которой также грозит гибелью клетки. Интересен и тот факт, что отдельные структурные элементы теломеразы имеют также свое функциональное предназначение в клетке.

Может ли человек самостоятельно активировать теломеразу в своем организме?

Да, активность теломеразы можно стимулировать. К некоторому повышению функции этого фермента, а значит и увеличению длины теломер, приводит умеренная физическая нагрузка, в меньшей степени - витамины и полиненасыщенные жирные кислоты, содержащиеся в здоровой пище.

В целом, длина теломер у людей, ведущих правильный образ жизни, значительно больше, чему тех, кто злоупотребляет алкоголем, курит, не следит за своим питанием и весом, ведет малоактивный образ жизни. К ее ускоренному сокращению ведут также стресс и вирусные заболевания.

Разумеется, с момента появления теломер-теломеразной гипотезы старения начались и поиски вещества, способного активировать теломеразу, с целью замедления процесса старения. Крупнейшая Американская биотехнологическая компания Geron Inc нашла молекулу, ставшую основой .

Что представляет из себя этот препарат?

Вышеупомянутая молекула была выделена из экстракта корня астрагала перепончатого- лекарственного растения, издавна применяющегося в китайской медицине как средство, предотвращающее развитие рака. В химическом составе данного экстракта содержится более 2000 молекул. И только одна из них способна активировать теломеразу наших клеток - она была названа TA-65.

Сам процесс экстрагирования и очистки этой молекулы - технологически очень сложный и многоступенчатый. Необходимо не только распознать ее среди остальных, но и добиться максимальной степени отделения от примесей. Запатентована и сама молекула и способ ее получения и переработки. Для изготовления минимальной партии ТА-65 необходимо переработать около 5-6 тонн корня астрагала. Очевидно, что доза активного веществаTA-65, находящаяся в 1 капсуле, сопоставима с несколькими литрами экстракта. Учитывая, что для получения выраженного эффекта необходим как минимум трехмесячный курс лечения, заменить его ежедневным приемом нескольких литров обычного экстракта корня астрагала невозможно.

Как ведет себя ТА-65 при попадании в организм?

Попадая в кровь, молекула проникает в клетку и включает ген, отвечающий за временную актививацию теломеразы. Активированная теломераза начинает достраивать конечные участки хромосом, путем добавления нуклеотидных оснований. Нарастив таким способом теломеры, клетка получает дополнительную возможность делиться, функционировать и продолжать жить -по сути превращаясь из стареющей в молодую и активную. Весь этот процесс зеркально отражается и на организме в целом.

После прекращения приема TA-65 теломераза вновь «засыпает». Таким образом, ее активация является временной и контролируемой. Максимальная концентрация действующего вещества в крови достигается через 3 часа после приема препарата.

Мы сейчас говорим о гипотезах или же существуют научные подтверждения эффективности ТА-65?

К настоящему времени мы располагаем данными довольно большого количества научных исследований, которые проводились в трех направлениях:

  • на клетках вне организма (клеточных культурах) - invitro;
  • на животных;
  • на людях.

Исследования первой группы показали, что добавление ТА-65 к клеточной культуре клеток продлевает жизненный цикл клетки и позволяет преодолеть лимит Хейфлика.

Первое документальное подтверждение обратимости возрастных изменений у млекопитающих под воздействием активатора теломеразы было опубликовано в журнале The Nature в 2011 году. Подопытные мыши имели короткие теломеры и минимальную активность фермента теломеразы. У них наблюдались выраженные дегенеративные нарушения в органах, повреждения ДНК в хромосомах, сильно пострадал мозг. Мыши не имели потомства, быстро старели и жили в среднем 43 недели.

В возрасте 30-35 недель, т.е. уже весьма преклонном, им ежедневно в течение месяца вводился активатор теломеразы. В результате длительность жизни мышей увеличивалась до 80 недель. У них удлинялись теломеры, восстанавливалась активность теломеразы, уменьшались повреждения ДНК в хромосомах и дегенеративные изменения в органах: яичках, селезенке, кишечнике и мозге. Восстанавливалась способность давать потомство. Таким образом, наблюдалось очевидное и выраженное омоложение животных. При этом, ни у одной из мышей не развился рак.

Вот что сказал о полученных результатах руководитель работы доктор Рональд ДеПиньо: «Представьте, что человека в возрасте 75-80 лет вернули к состоянию 40-50-летнего. Примерно это мы успешно проделали на мышах».

А как повел себя препарат при тестировании на людях?

В январе 2007 года была запущена программа PattonProtocol-1 («Протокол Паттона») с участием добровольцев. Активатор теломеразы ТА-65 принимали 114 человек в возрасте63 ± 12 лет, 72% из которых были мужчины, 54% участников - носители цитомегаловирусной инфекции. Результаты исследования были опубликованы в журнале «Rejuvenation Research» в 2010 году. Оказалось, что ТА-65:

  • удлиняет критически короткие теломеры (что было подтверждено измерениями в 2-х независимых лабораториях Repeat Diagnostics и Richard Cawthon;
  • омолаживает иммунную систему;
  • не приводит к развитию побочных эффектов.

Участники исследования сообщили об улучшении зрения, половой функции, нормализации веса, повышении уровня энергии и выносливости, гибкости, остроты мышления. Кроме того, отмечалось уменьшение количества появлений возрастных пигментных пятен, улучшение общего состояния кожи, волос и ногтей.

В дополнение к очевидной положительной иммунной реконструкции, прием ТА-65 оказался способен улучшить показатели метаболизма углеводов и липидов, а также состояние сердечно-сосудистой и костной систем.

  • Основные завершенные исследования ТА-65:
Тип исследования
Автор
Содержание и выводы
Эпидемиологические Katharine Shaefer 110 000 добровольцев, 3 года наблюдений. В группе пациентов, у которых теломеры были на 10% короче, уровень смертности был на 23% выше
P. Willeit 787 добровольцев, 10 лет наблюдений. Добровольцы с критически короткими теломерами в 3 раза больше рискуют заболеть раком и в 11 больше - умереть от него по сравнению с теми, у кого длина теломер была максимальной
In vitro Woody Wright Добавление активатора теломеразы к клеточной культуре продлевает жизненный цикл клетки и позволяет преодолеть предел Хейфлика
Fauce SR, Jamieson BD, Chin AC TA-65 является эффективным активатором теломеразы в неонатальных кератиноцитах и фибробластах, вызывает временную контролируемую активацию теломеразы в соматических клетках
На лабораторных животных Mariela Jaskelioff, Florian L. Muller, Ji-Hye Paik Возрастные изменения у млекопитающих обратимы: применение активатора теломеразы у мышей позволило продлить жизнь с 43 до 86 недель, уменьшились дегенеративные изменения в органах, восстановилась способность давать потомство. Ни у одной мыши не было случаев развития рака
Maria Blasco TA-65 удлиняет короткие теломеры и увеличивает продолжительность периода здоровой жизни взрослых мышей без увеличения заболеваемости раком
Открытое клиническое исследование Patton N, Harley CB Открытое исследованиеб 114 добровольцев. Снижение процента стареющих цитотоксических (CD8+/CD28-) Т-клеток, снижение процента коротких теломер. TA-65 является эффективным активатором теломеразы в клетках иммунной системы человека
  • Текущие исследования и их цели:
Исследование Автор и содержание
Окончание
ЦМВ (Цитомегаловирусная инфекция) Antonio Celada, Antiaging Group University of Barcelona, Spain. 125 человек 12 месяцев. Контролируемое исследование сравнения длины теломер, иммунологических и других биомаркеров старения у взрослых ЦМВ+, принимающих ТА-65 в высокой, низкой дозе или плацебо
Метаболический синдром University of Connecticut. 45 человек, 6 месяцев. Пилотное клиническое исследование эффективности ТА-65 при метаболическом синдроме (оценка влияния на инсулинорезистентность, оксидативный стресс и воспаление) Закончено, обработка результатов
ВМД (возрастная макулярная дегенерация - дистрофия сетчатки глаза) Chippewa Valley Eye Clinic, Wisconsin. 44 человека 18 месяцев. Пилотное исследование оценки эффективности ТА-65 на ранних стадиях ВМД I квартал 2015 года

Как давно этот препарат поставляется в РФ и где его можно купить?

В России «ТА-65» представлен с июня 2013 года. Реализуетсяв сети аптек A5, AVE, Самсон Фарма, Вита (Самара), Планета Здоровья (Пермь, Москва) и ведущих клиниках столичного региона (Клиника Профессора Калинченко, Клиника Валлекс-М), Тюмени (Нео-Клиник). Ежедневная доза зависит от возраста: от 40 до 50 лет рекомендуется 1 капсула в сутки, в возрасте от 50 до 60 лет - 2 капсулы в сутки, старше 60 лет - 4 капсулы в сутки.

Собрана ли уже какая-то статистика по результатам использования ТА-65 именно в нашей стране?

Длину теломер можно измерить с помощью лабораторных методов анализа. В США и Европе такие измерения проводятся с 2007 года, с момента появления продукта. Когда препарат появился в России, мы задумались о возможности проведения таких анализов у нас. Методики измерения теломер уже имелись, но, за отсутствием спроса, никто из врачей не назначал такой анализ, а сами пациенты о нем не знали.

Совместно с лабораторией Архимед мы запустили проект по измерению теломер в Москве. Также, открыта лаборатория в Тюмени в NEO-Clinic и в Санкт-Петербурге в клинике «Древо Жизни». С мая 2014 года лаборатории активно работают, у нас уже есть первые данные по пациентам, которые сдавали кровь до начала применения минимального курса и после. Исходя из полученных результатов можно сделать вывод оположительной тенденции в процессе увеличения длины теломер на российских пациентах.

Сегодня наша компания предоставляет бесплатную возможность сдать кровь на длину теломер всем пациентам, купившим одну упаковку ТА-65 90 капсул. Для этого необходимо зарегистрироваться на нашем сайте www.ta-65.ru в личном кабинете и ввести уникальный код, располагающийся под крышкой картонной упаковки. После этой процедуры вы получите возможность дважды сдать кровь на определение длины теломер (до начала приема ТА-65 и через 6 месяцев после начала приема). Здесь же можно проверить подлинность купленной вами упаковки по уникальному коду. Говоря об эффектах от приема ТА-65 важно отметить его положительное воздействие на иммунную систему. Именно поэтому пациенты, принимающие активатор, чувствуют прилив сил, реже подвергаются простудным заболеваниям, у них реже происходит обострение хронических заболеваний, например, при герпесе. Известно, что иммунная система играет важную роль в защите нашего организма и от раковых процессов.

А вот что говорит об опыте использования ТА-65 у своих пациентов профессор кафедры эндокринологии РУДН, ФПК МР, Леонид Олегович Ворслов:

«Первое, что отмечают наши пациенты - это прилив сил, жизненной энергии, которых так не хватает после сорокалетнего рубежа. Связано это со старением иммунной системы. Именно она отвечает за наше хорошее самочувствие, способность противостоять болезням и сохранять энергию молодости. И именно иммунная система в первую очередь реагирует на прием ТА-65, запуская механизмы обновления и увеличения продолжительности жизни иммунных клеток.

Отвечая на вопрос «как быстро пациент ощутит эффект?», правильнее говорить о результатах после курса приема, который составляет 3 месяца. И этот результат будет индивидуален для каждого, в зависимости от исходного уровня и состояния пациента, а также от его возраста. Понятно, что в 38-45 лет человека еще не слишком беспокоят усталость, нарушения памяти и внимания. И в этом возрасте правильнее говорить о сохранении вышеперечисленных функций на должном уровне, об их поддержании. Т.е., если вы начали принимать ТА-65 в 38-40 лет, у вас есть возможность в 50 лет выглядеть и чувствовать себя на 38-40. А вот те пациенты, которые начали прием с 50-ти лет - смогут в полной мере ощутить подъем жизненной энергии и положительные изменения в своем организме.

Вирусные заболевания при приеме ТА-65 отступают. Люди, подверженные частым простудным заболеваниями или входящие в группу риска (медицинские работники, учителя и др) сообщают об уменьении или полном их отсутствии в сезоны вспышек. Отмечают также уменьшение количества эпизодов герпесо-вирусной инфекции или полностью избавились от обострений.

Конечно, женская часть наших пациентов в первую очередь обращает внимание на улучшение состояния волос, ногтей и кожи. Клетки эпидермиса (кожа) - это вторая система, после иммунной, которая очень быстро реагирует на прием активатора теломеразы. Безусловно, улучшение общего самочувствия, появление сил и бодрости, повышение настроения и собственной привлекательности положительно сказываются на сексуальной активности и успехах в этой сфере нашей жизни»

В целом, наблюдения за пациентами, принимающими TA-65, ведутся с 2007 года, с того самого момента, как продукт появился в продаже. Среди десятков тысяч людей, принимающих его на протяжении всего этого времени, не выявлено серьезных побочных эффектов.

А возможно ли что активация теломеразы стимулирует удлинение теломер не для отдельных клеток, а для всех тканей организма в целом, не исключая и клетки с различными патологиями (в т.ч. онкологическими). Проще говоря, может ли активация теломеразы вызвать рак?

Ваш вопрос возвращает нас к началу интервью. Одна из основных функций теломер - это защита генетической информации хромосом при делении клеток. Как я говорила ранее, существует множество доказательств того, что именно укорочение теломер связано с развитием рака и является предрасполагающим фактором кразвитию ряда онкологических заболеваний. Так, короткие теломеры лейкоцитов могут предсказывать развитие рака, синдрома Беретта и язвенного колита.

Критически короткие теломеры неспособны защитить хромосомы от повреж¬дения при делении клетки. И если критически короткой величины достигает хотя бы одна теломера, в клетке происходит резкое изменение метаболизма, в первую очередь - нарушение репликации ДНК. В этот момент запускаются механизмы клеточного старения и разрушения. Затем до окончательной гибели клетки может пройти от нескольких месяцев до нескольких лет. Именно в этот период под воздействием генетических мутаций клетка может переродиться в раковую. Таким образом, риск развития рака у человека появляется как только его теломеры достигают предельно короткой длины, а не наоборот.

В то же время, у большинства раковых клеток теломеры бесконечно длинные. Чем же это обьясняется?

Раковый процесс очень сложен по своей природе и активация теломеразы не является пусковым механизмом в нем, а следовательно, не выступает причиной рака. Представьте себе клетку, у которой теломеры сократились до критически короткой величины. Клетка попадает в кризисное состояние и может быть подвержена генетическому сбою или мутации, что приведет к раковому процессу. Этот сбой или мутация никак не связаны с активностью теломеразы извне или внутри. А15% всех опухолей поддерживают длину теломер на должном уровне в отсутствии теломеразы. Таким образом, в этих злокачественных клетках действует другой (не теломеразный, а скорее рекомбинантный) механизм, известный как «альтернативное удлинение теломер» («Alternative Lengthening of Telomeres»).

Риск возникновения рака возникает тогда, когда более выражены признаки клеточного старения, что наиболее характерно для пожилых людей. Современный образ жизни, стресс, злоупотребление лекарствами приводят к недостатку отдельных теломеразных компонентов, и к более раннему фенотипическому старению с потерей функции на клеточном и системном уровне. Активация теломеразы может предотвратить раковое перерождение:

  • во-первых, потому что за счет омоложения снижается вероятность хромосомных перестроек в клетках,
  • а во-вторых, потому что теломераза может увеличить продолжительность жизни иммунных клеток, улучшив их способность находить и уничтожать раковые клетки.

Ранее уже указывалось, что активация теломеразы в нормальных клетках приводит к их омоложению без признаков озлокачествления. В 2012 году в Японии было проведено исследование, в ходе которого подтвердилось, что активация теломеразы извне не может привести к раковому процессу либо как-то его усугубить.

Первая система, которая реагирует на прием TA-65 - это иммунная система, которая играет огромную роль как в самом раковом процессе, так и в его предотвращении. Каждый миг в организме человека образуются раковые клетки. Этот процесс является непрерывным. Но иммунная система их распознает и уничтожает. С возрастом теломеры в иммунных клетках становятся короче, система теряет способность справляться с раковыми и патологическими образованиями. Наращивая теломеры в имунных клетках, ТА-65 позволяет поддерживать иммунитет организма на очень высоком уровне. Умеренная и контролируемая активация теломеразы не только снижает и предотвращает риски развития онкологических процессов, но и, вероятно, помогает с ними бороться.

Еще одно исследование показало, что длина теломер влияет на дифференцировку раковых клеток in vivo. Ученые из института рака в Японии продемонстрировали, что принудительное удлинение теломер в раковых клетках способствует их дифференцировке, что может уменьшить степень злокачественности опухоли. Результаты указывают на то, что удлинение теломер раковых клеток смягчает поведение уже существующей опухоли.

Существуют ли аналоги TA-65? В чем преимущество данного препарата?

К сожалению, у ТА-65 нет конкурентов. Год назад мне посчастливилось прочесть книгу, которая называется «Грани бессмертия», в ней описывается поиск и открытие теломеразы и то, как ее исследователи получили Нобелевскую премию. Авторы подтверждают, что на сегодняшний день ТА-65 - это единственный доступный людям активатор теломеразы. Надеюсь, в будущем появятся новые средства, позволяющие продлить здоровую жизнь.

Обещает ли производитель добиться повышения эффективности ТА-65?

Да, мы думаем об этом. Более того, есть планы уже в этом году вывести на рынок новый продукт, который будет следующей ступенью в anti-age направлении, позволит сохранить всю уникальность существующих наработок и усилить воздействие на процессы, связанные со старением, а так же совместит в себе дополнительную протекцию от наиболее губительных процессов в организме, присоединяющихся с возрастом.

Как видят производители дальнейшую судьбу препарата и пациетов, принимающих его?

С научной точки зрения, активация теломеразы и ТА-65 - это не только омоложение и, даже не столько омоложение - это вопрос о сохранении здоровья и поддержания качества жизни. Ведь все болезни у нас, как правило, появляются после сорока лет.200 лет назад, когда продолжительность жизни была заметно меньше, чем сегодня, человек не сталкивался со многими современными недугами. Например, женщина не знала что такое климакс, так как умирала еще до его наступления. В наше время, имея возможность прожить и 80, и 90 лет, мы увеличили время не только своего счастливого существования, но и количество заболеваний, ассоциированных с возрастом. Канцерогенез, заболевния органов зрения, репродуктивной, костной и сердечно-сосудистой системы - все они связаны со старением клеток и, соответственно, с сокращением длины теломер.

TA-65 и теломерная теория - это не только молодость и продление жизни, это повышение качества жизни, ее уровня. Благодаря эстетической медицине в 60 лет можно казаться на 10-15 лет моложе, но то, что происходит внутри организма сказывается на всем, в том числе и на нашей способности носить эту молодость, пребывая в бодрости и хорошем самочувствии.

Очень важно не казаться моложе, а быть моложе - это один из основных тезисов, который мы пытаемся донести до наших врачей и пациентов

В Европе и США теломерная теория старения изучается достаточно давно. В прошлом году я побывала на конгрессе, который так и назывался «Теломеры, теломераза и заболевания». В течение трех дней работы обсуждался вопрос влияния длины теломер на развитие самых разных патологий. Были представлены результаты научных исследований, демонстрирующие важность сохранения длины теломер.

В России эти данные появились совсем недавно, и для меня это означает только одно: если раньше мы не знали о существовании взаимосвязи между длиной теломер и патогенезом многих заболеваний, то в будущем нас ожидает множество открытий, которые помогут предотвратить эти заболевания, вывести нас на качественно новый уровень жизни, поможет привнести больше радости, успеха и благополучия в нашу жизнь. Только представьте сколько еще открытий может совершить человек, сколько жизненных целей достичь, разрешить загадки Вселенной, если у него для этого будет самое главное - его Здоровье! А сейчас у нас в руках есть реальный инструмент для управления своим возрастом и здоровьем изнутри и снаружи - ТА-65!

Теломеры представляют собой повторяющуюся последовательность ДНК на концах хромосом. Всякий раз, когда клетка воспроизводится, теломеры становятся короче. В конечном счёте, теломеры изнашиваются, и клетка более не способна делиться и омолаживаться, в результате чего здоровье клетки ухудшается, что увеличивает риск болезни. В итоге клетка погибает.

В 1962 американский учёный Л. Хейфлик произвёл переворот в области биологии клетки, создав концепцию теломер, известную как лимит Хейфлика. По мнению Хейфлика, максимальная (потенциально) продолжительность человеческой жизни составляет сто двадцать лет – это возраст, когда слишком большое количество клеток уже не способно к делению, и организм умирает.

Механизм, посредством которого питательные вещества влияют на длину теломер, заключается в том, что еда оказывает воздействие на теломеразу, энзим, добавляющий теломерные повторы к концам ДНК.

Теломеразе посвящены тысячи исследований. Они известны тем, что поддерживают геномную стабильность, предотвращают нежелательную активацию путей повреждения ДНК и регулируют старение клеток.

В 1984 Элизабет Блэкбёрн, профессор биохимии и биофизики в Калифорнийском университете в Сан-Франциско, обнаружила, что энзим теломераза способен удлинять теломеры, синтезируя ДНК из РНК-праймера. В 2009 Блэкбёрн, Кэрол Грейдер и Джек Шостак получили Нобелевскую премию в области физиологии и медицины за открытие того, как теломеры и энзим теломераза защищают хромосомы.

Вполне возможно, что знание о теломерах даст нам возможность значительно увеличить продолжительности жизни. Естественно, исследователи занимаются разработкой фармацевтических средств такого рода, но существуют достаточные свидетельства того, что простой образ жизни и правильное питание тоже эффективны.

Это радует, поскольку короткие теломеры суть фактор риска – они приводят не только к смерти, но и к многочисленным заболеваниям.

Так, укорачивание теломер связывают с заболеваниями, список которых приведён ниже. Исследования на животных показали, что многие заболевания могут быть устранены благодаря восстановлению функции теломеразы. Это и пониженная сопротивляемость иммунной системы инфекциям, и диабет второго типа, и атеросклеротическое повреждение, а также нейродегенеративные болезни, тестикулярная, селезёночная, кишечная атрофия.

Результаты всё большего числа исследований показывают, что определённые нутриенты играют значительную роль в деле защиты длины теломер и оказывают значительное влияние на продолжительность жизни, в их числе – железо, жиры омега-3, а также витамины E и C, витамин D3, цинк, витамин B12.

Ниже приведено описание некоторых питательных веществ такого рода.

Астаксантин

Астаксантин обладает прекрасным противовоспалительным действием и эффективно защищает ДНК. Исследования показали, что он способен защищать ДНК от повреждения, вызванного гамма радиацией. Астаксантин обладает множеством уникальных черт, которые делают его выдающимся соединением.

Например, это самый мощный окислитель-каротиноид, способный «вымывать» свободные радикалы: астаксантин в 65 раз эффективнее витамина C, в 54 раза – бета-каротина и в 14 раз – витамина E. Он в 550 раз более эффективен, нежели витамин E, и в 11 раз более эффективен, нежели бета-каротин, в деле нейтрализации синглетного кислорода.

Астаксантин преодолевает и гемоэнцефалический, и гематоретинальный барьер (бета-каротин и каротиноид ликопин на это не способны), благодаря чему мозг, глаза и центральная нервная система получают антиокислительную и антивоспалительную защиту.

Другое свойство, отличающее астаксантин от иных каротиноидов, выражается в том, что он не может действовать как проокислитель. Многие антиоксиданты действуют как прооксиданты (т. е., они начинают окислять, вместо того, чтобы противодействовать окислению). Однако астаксантин, даже в больших количествах, не действует как окислитель.

Наконец, одно из самых важных свойств астаксантина – его уникальная способность защищать всю клетку от разрушения: как водорастворимую, так и жирорастворимую её части. Другие антиоксиданты влияют лишь либо на одну, либо на другую часть. Уникальные физические характеристики астаксантина позволяют ему находиться в клеточной мембране, защищая также внутреннюю область клетки.

Прекрасным источником астаксантина является микроскопическая водоросль Haematococcus pluvialis, растущая на Шведском архипелаге. Кроме того, астаксантин содержит старая добрая черника.


Убихинол

Убихинол - восстановленная форма убихинона. По сути, убихинол – это убихинон, присоединивший к себе молекулу водорода. Содержится в брокколи, петрушке и апельсинах.

Ферментированные продукты/пробиотики

Совершенно очевидно, что диета, состоящая, преимущественно, из переработанных продуктов, сокращает продолжительность жизни. Исследователи считают, что в будущих поколениях возможны множественные генетические мутации и функциональные расстройства, приводящие к болезням – по той причине, что нынешнее поколение активно потребляет искусственные и переработанные продукты.

Отчасти, проблема заключается в том, что переработанные продукты, изобилующие сахаром и химическими веществами, эффективно уничтожают кишечную микрофлору. Микрофлора влияет на иммунную систему, которая, является естественной защитной системой тела. Антибиотики, стресс, искусственные подсластители, хлорированная вода и многие другие явления также уменьшают объём пробиотиков в кишечнике, что предрасполагает организм к болезням и преждевременной старости. В идеале, рацион должен включать традиционно культивируемые и ферментированные продукты.

Витамин K2

Этот витамин вполне может быть «ещё одним витамином D», поскольку исследования показывают многочисленные блага этого витамина для здоровья. Большинство людей получает адекватное количество витамина K2 (поскольку он синтезируется самим организмом в тонком кишечнике), которое позволяет поддерживать коагуляцию крови на адекватном уровне, но этого количества не достаточно, чтобы защитить организм от серьёзных проблем со здоровьем. Например, проведённые в последние годы исследования показывают, что витамин K2 может защищать организм от рака предстательной железы. Витамин K2 также благотворен для здоровья сердца. Содержится в молоке, сое (в больших количествах – в натто).

Магний

Магний играет важную роль в деле воспроизводства ДНК, его восстановлении и синтезе рибонуклеиновой кислоты. Долгосрочный дефицит магния приводит к сокращению теломер в телах крыс и клеточной культуре. Недостаток ионов магния негативно влияет на здоровье генов. Нехватка магния понижает способность тела восстанавливать повреждённую ДНК и вызывает в хромосомах аномалии. В целом, магний влияет на длину теломер, поскольку связан со здоровьем ДНК и её способностью восстанавливаться, а также повышает сопротивляемость организма окислительному стрессу и воспалению. Содержится в шпинате, спарже, пшеничных отрубях, орехах и семечках, фасоли, зелёных яблоках и салате, в сладком перце.

Полифенолы

Полифенолы – мощные антиокислители, способные замедлять процесс.

«Нестареющая» Нобелевская премия: в 2009 году отмечены работы по теломерам и теломеразе

В 2009 году Нобелевская премия по физиологии и медицине вручена трём американским учёным, разрешившим важную биологическую проблему: как хромосомы при делении клетки копируются полностью , без того, чтобы ДНК на их кончиках укорачивалась? В результате их исследований стало известно, что «защитным колпачком» для хромосом служат особым образом устроенные окончания ДНК - теломеры , достройкой которых занимается специальный фермент - теломераза .

В отличие от бактерий, имеющих кольцевую хромосому, хромосомы эукариот устроены линейно, и концы ДНК «подрезаются» при каждом делении. Чтобы избежать порчи важных генов, окончания каждой хромосомы защищены теломерами ..

Длинная нитеобразная молекула ДНК - главный компонент хромосом, несущий генетическую информацию, - с обоих концов закрыта своего рода «заглушками» - теломерами . Теломеры представляют собой участки ДНК с уникальной последовательностью и защищают хромосомы от деградации. Это открытие принадлежит двум лауреатам Нобелевской премии по физиологии и медицине за 2009 г. - Элизабет Блэкберн (Elizabeth Blackburn ), уроженке США и в настоящее время сотруднице Университета Калифорнии (Сан-Франциско, США), и Джеку Шостаку (Jack Szostak ), профессору Института Ховарда Хьюза . Элизабет Блэкберн в сотрудничестве с третьим лауреатом премии этого года - Кэрол Грейдер (Carol Greider ), сотрудницей Университета Джона Хопкинса , - открыла в 1984 году фермент теломеразу , синтезирующий ДНК теломер (и тем самым достраивая их после неизбежного при каждом копировании хромосомы укорачивания). Таким образом, исследования, отмеченные премией в этом году (около 975 тысяч евро, поделенные поровну между лауреатами), объясняют, как теломеры защищают кончики хромосом, и как теломераза синтезирует теломеры.

Давно отмечено, что старение клетки сопровождается укорачиванием теломер. И, наоборот, в клетках с высокой активностью теломеразы, достраивающей теломеры, длина последних остается неизменной, и старение не наступает. Это, кстати, относится и к «вечно молодым» раковым клеткам, в которых механизм естественного ограничения роста не действует. (А для некоторых наследственных заболеваний характерна дефектная теломераза, что приводит к преждевременному клеточному старению.) Присуждение за работы в этой области Нобелевской премии является признанием фундаментального значения этих механизмов в живой клетке и огромного прикладного потенциала, заложенного в отмеченных работах.

Таинственная теломера

В хромосомах содержится наш геном, а «физическим» носителем генетической информации являются молекулы ДНК. Ещё в 1930 году Герман Мёллер (лауреат Нобелевской премии по физиологии и медицине 1946 года «за открытие появления мутаций под влиянием рентгеновского облучения») и Барбара Мак-Клинток (лауреат Нобелевской премии в той же категории 1983 года «за открытие транспозирующих генетических систем») обнаружили, что структуры на концах хромосом - так называемые теломеры - предотвращали слипание хромосом между собой. Было высказано предположение, что теломеры выполняют защитную функцию, но механизм этого явления оставался совершенно неизвестным.

Позже, в 1950-х, когда уже было в общих чертах понятно, как копируются гены, возникла другая проблема. При делении клетки основание за основанием дублируется и вся клеточная ДНК, - при помощи ферментов ДНК-полимераз. Однако для одной из комплементарных цепей возникает проблема: самый конец молекулы не может быть скопирован (дело тут в «посадочном» сайте ДНК-полимеразы). Вследствие этого, хромосома должна укорачиваться при каждом делении клетки, - хотя на самом деле этого не происходит (на рисунке: 1).

И та, и другая проблема были со временем решены, за что в этом году и вручают премию.

ДНК теломер защищает хромосомы

Ещё в начале своей научной карьеры Элизабет Блэкберн занималась картированием последовательностей ДНК на примере одноклеточного жгутикового организма тетрахимены (Tetrahymena ). На концах хромосомы она обнаружила повторяющиеся последовательности ДНК вида CCCCAA, функция которых была на тот момент совершенно неизвестна. В то же время Джек Шостак обнаружил, что линейные молекулы ДНК (что-то вроде минихромосомы), введённые в клетку дрожжей, очень быстро деградируют.

Исследователи встретились на конференции в 1980 г., где Блэкберн докладывала свои результаты, заинтересовавшие Шостака. Они решили провести совместный эксперимент, в основе которого было «растворение барьеров» между двумя эволюционно весьма далёкими видами (на рисунке: 2). Блэкберн выделила из ДНК тетрахимены последовательности CCCCAA, а Шостак присоединил их к минихромосомам, помещённым затем в клетки дрожжей. Результат, опубликованный в 1982 году, превзошёл ожидания: теломерные последовательности действительно защищали ДНК от деградации! Это явление наглядно продемонстрировало существование неизвестного ранее клеточного механизма, регулирующего процессы старения в живой клетке. Позже подтвердилось наличие теломер в подавляющем большинстве растений и животных - от амёбы до человека.

Фермент, синтезирующий теломеры

В 1980-х аспирантка Кэрол Грейдер работала под началом Элизабет Блэкберн; они начали изучение синтеза теломер, за который должен был отвечать неизвестный на ту пору фермент. В канун рождества 1984 года Грейдер зарегистрировала искомую активность в клеточном экстракте. Грейдер и Блэкберн выделили и очистили фермент, получивший название теломераза , и показали, что в его состав входит не только белок, но и РНК (на рисунке: 3). Молекула РНК содержит «ту самую» последовательность CCCCAA, используемую в качестве «шаблона» для достройки теломер, в то время как ферментативная активность (типа обратной транскриптазы ) принадлежит белковой части фермента. Теломераза «наращивает» ДНК теломеры, обеспечивая «посадочное место» для ДНК-полимеразы, достаточное для копирования хромосомы без «краевых эффектов» (то есть, без потерь генетической информации).

Теломераза отсрочивает старение клетки

Учёные начали активно заниматься исследованием роли теломер в клетке. Лаборатория Шостака установила, что дрожжевая культура с мутацией, приводящей к постепенному укорачиванию теломер, развивается очень медленно и, в конце концов, вообще прекращает рост. Сотрудники Блэкберн показали, что в тетрахимене с мутацией в РНК теломеразы наблюдается в точности такой же эффект, который можно охарактеризовать фразой «преждевременное старение» . (По сравнению с этими примерами, «нормальная» теломераза предотвращает укорачивание теломер и задерживает наступление старости.) Позже в группе Грейдер открыли, что те же механизмы работают и в клетках человека. Многочисленные работы в этой области помогли установить, что теломера координирует вокруг своей ДНК белковые частицы, образующие защитный «колпачок» для кончиков молекулы ДНК.

Части головоломки: старение, рак и стволовые клетки

Описанные открытия имели самый сильный резонанс в научном сообществе. Многие учёные заявляли, что укорачивание теломер является универсальным механизмом не только клеточного старения, но и старости всего организма в целом. Однако со временем стало понятно, что теломерная теория не является пресловутым «молодильным яблоком», поскольку процесс старения на самом деле чрезвычайно сложен и многосторонен, и не сводится исключительно к «подрезанию» теломер. Интенсивные исследования в этой области продолжаются и сегодня.

Большинство клеток делится не так уж часто, так что их хромосомы не находятся в зоне риска чрезмерного укорачивания и, в общем-то, не требуют высокой теломеразной активности. Другое дело - раковые клетки: они обладают способностью делиться бесконтрольно и бесконечно, как бы не зная о бедах с укорачиванием теломер. Оказалось, что в опухолевых клетках очень высокая активность теломеразы, что и защищает их от подобного укорачивания и придаёт потенциал к неограниченному делению и росту. В настоящее время существует подход к лечению рака, использующий концепцию подавления теломеразной активности в раковых клетках, что привело бы к естественному исчезновению точек бесконтрольного деления. Некоторые средства с антителомеразным действием уже проходят клинические испытания.

Ряд наследственных заболеваний характеризуется сниженной теломеразной активностью, - например, апластическая анемия, при которой из-за низкого темпа деления стволовых клеток в костном мозге развивается анемия. К этой же группе относится ряд заболеваний кожи и лёгких.

Открытия, сделанные Блэкберн, Грейдер и Шостаком, открыли новое измерение в понимании клеточных механизмов, и, несомненно, имеют огромное практическое применение - хотя бы в лечении перечисленных заболеваний, а может быть (когда-нибудь) - и в обретении если не вечной, то хотя бы более длительной жизни.

==========================================================================

ТЕЛОМЕРЫ И ТЕЛОМЕРАЗА: РОЛЬ В СТАРЕНИИ

В 1961 г. Хейфлик и Мурхед [ HayJlick ea 1961 ] представили данные о том, что даже в идеальных условиях культивирования фибробласты эмбриона человека способны делиться только ограниченное число раз (около 50). Было установлено, что при самом тщательном соблюдении всех мер предосторожности при пересевах клетки проходят in vitro ряд вполне морфологически различимых стадий (фаз), после чего их способность к пролиферации исчерпывается и в таком состоянии они способны находиться длительное время. В повторных опытах это наблюдение было многократно воспроизведено, последняя фаза жизни клеток в культуре была уподоблена клеточному старению , а сам феномен получил по имени автора название " предела Хейфлика ". Более того, оказалось, что с увеличением возраста донора число делений, которые были способны совершить клетки организма, существенно уменьшалось, из чего было сделано заключение о существовании гипотетического счетчика делений, ограничивающего общее их число [ Hayjlick ea 1998 ].

В 1971 г. Оловников [ Оловников ea 1971 ] на основании появившихся к тому времени данных о принципах синтеза ДНК в клетках предложил гипотезу маргинотомии , объясняющую механизм работы такого счетчика. По мнению автора гипотезы, при матричном синтезе полинуклеотидов ДНК-полимераза не в состоянии полностью воспроизвести линейную матрицу, реплика получается всегда короче в ее начальной части. Таким образом, при каждом делении клетки ее ДНК укорачивается, что ограничивает пролиферативный потенциал клеток и, очевидно, является тем "счетчиком" числа делений и, соответственно, продолжительности жизни клетки в культуре. В 19J2 г. Медведев [ Medvedev ea 1972 ] показал, что повторяющиеся копии функциональных генов могут запускать процесс старения или управлять им.

Открытие в 1985 г. теломеразы - фермента, который достраивал укороченную теломеру в половых клетках и клетках опухолей, обеспечивая их бессмертие [ Greider ea 1998 ], вдохнуло новую жизнь в гипотезу Оловникова. Было выполнено огромное количество работ [ Егоров ea 1997 , Оловников ea 1971 , Оловников ea 1999 , Faragher ea 1998 , Greider ea 1985 , Hayjlick ea 1998 , Olovnikov ea 1996 , Reddel ea 1998 , Weng ea 1997 , Zalensky ea 1997 ]. Установлены следующие основные факты:

1. Концы линейных хромосом с З"-конца ДНК заканчиваются повторяющимися последовательностями нуклеотидов, получившими название теломер, которые синтезируются специальным рибонуклеиновым ферментом теломеразой.

2. Соматические клетки эукариот, имеющие линейные хромосомы, лишены теломеразной активности. Их теломеры укорачиваются как в процессе онтогенеза и старения in vivo, так и при культивировании in vitro.

3. Половые клетки и клетки иммортализированных линий, а также опухолей имеют высокоактивную теломеразу, которая достраивает З"- конец ДНК, на котором реплицируется комплементарная цепь при делении.

4. Структуры теломер сильно различаются среди простейших, однако у всех позвоночных они одинаковы - (TTAGGG)n.

5. Имеются существенные межвидовые различия в длине теломер, причем у мыши общая их длина в несколько раз превышает таковую у человека (до 150 тыс. пар нуклеотидов у некоторых линий мышей и 7-15 т.п.н. у человека).

6. Репрессия теломеразы определяет клеточное старение в культуре ("лимит Хейфлика").

7. Клетки больных синдромом преждевременного старения Хатчинсона-Гилфорда и синдромом Дауна имеют укороченные теломеры.

Доказательства правомочности такого предположения были представлены Кионо и соавт. [ Kiyono ea 1998 ]: введение каталитического компонента теломеразы hTERT или теломеразной активности с помощью онкобелка вируса папилломы человека E7 в кератиноциты или клетки эпителия человека не приводило к их полной иммортализации. Она наступала лишь при дополнительном торможении регуляции антионкогена Rb или при угнетении экспрессии р16 в качестве второй важнейшей ступени этого процесса. При элиминации антионкогена р53 такого эффекта не наблюдалось. С другой стороны, протоонкоген с-Мус может активировать экспрессию теломеразы [ Wang ea 1998 ]. С помощью опосредованного микроклетками переноса маркированную геном пео хромосому 20 из стареющих и молодых диплоидных фибробластов человека ввели в молодые фибробласты. Во всех новообразованных клонах наблюдалось уменьшение пролиферативного потенциала на 17-18 удвоений популяции [ Егоров ea 1997 ]. Авторы склонны рассматривать полученные данные как свидетельство того, что отдельные теломеры способны ограничить пролиферативный потенциал клеток.

Показано, что старение некоторых тканей, например, эпителиальных клеток слизистой полости рта или роговицы глаза человека in vivo, не сопровождается укорочением теломер [ Egan ea 1998 , Kang ea 1998 ]. Экспрессия белка аденовируса 13 E1B 54К в нормальных клетках человека сопровождалась существенным увеличением их пролиферативного потенциала (до 100 удвоений). Когда затем деления все же прекратились и клетки перешли в фазу старения, то какого-либо существенного укорочения их теломер выявлено не было [ Gallimore ea 1997 ]. Экспрессию активности теломеразы наблюдали в печени крыс после частичной гепатэктомии [ Tsujiuchi ea 1998 ], т.е. в процессе регенерации. Не удалось наблюдать существенных изменений в продолжительности жизни или развитии мышей с "выключенным" геном теломеразы [ Lee ea 1998 ].

Многое в этой области еще предстоит выяснить. Тем не менее очевидно, что опыты с теломеразой открывают новые перспективы как в геронтологии, так и в онкологии для диагностики рака и, что особенно важно, для его лечения. См. Биология теломер

====================================================================

Демидовский лауреат Алексей Матвеевич Оловников

Оловников Алексей Матвеевич, родился 10 октября 1936 года в Владивостоке, закончил ВГУ - специалист в области биологии старения и теоретической молекулярной и клеточной биологии. Кандидат биологических наук, ведущий научный сотрудник Института Биохимической физики РАН. Оловников Алексей Матвеевич- автор цикла теоретических работ, в которых впервые в мире предсказано укорочение хромосом при старении, описан эффект концевой недорепликации любых линейных молекул ДНК и, кроме того, предсказано существование теломеразы как фермента, компенсирующего укорочение теломер (концевых участков хромосом).

А.М.Оловников сделал ряд ключевых теоретических обобщений, много лет спустя полностью экспериментально подтвержденных во многих лабораториях мира. Суть этих работ АМ Оловникова в следующем:

1) было указано на существование проблемы концевой недорепликации линейных молекул ДНК (концы как ахиллесова пята двойной спирали ДНК);

2) предсказано укорочение теломер (концов хромосом) при делениях соматических клеток, а также существование корреляции между величиной укорочения теломер и числом удвоений, выполненных делящимися нормальными эукариотическими клетками in vitro;

3) предсказано, что в нормальных половых клетках должна экспрессироваться новая форма ДНК-полимеразы, компенсирующая укорочение концов хромосом (то есть, предсказано существование теломеразы);

4) предсказано также, что в клетках злокачественных опухолей должна экспрессироваться эта компенсирующая ДНК-полимераза (то есть теломераза). Указано, что она создана природой для стабильности полового генома (предотвращает укорочение концов хромосом), но в то же самое время она наделяет раковые клетки потенциальным бессмертием (отсутствием у них лимита клеточных удвоений);

5) хорошо известный к тому времени факт кольцевой формы генома бактерий и многих вирусов был впервые интерпретирован как способ защиты их генома от концевой недорепликации ДНК: поскольку у кольцевой ДНК нет конца, то и нечему укорачиваться.

В целом, в этом цикле пионерских работ АМ Оловникова, о которых сообщалось, помимо статей, также в трудах международного конгресса по геронтологии (Киев, 1972) и в лекциях (в том числе в США, 1998) предложена серия идей, которые позволили связать воедино серию до того разрозненных фактов и фактически предложить исследовательскую программу, стимулировавшую соответствующие исследования в ряде биологических и биомедицинских дисциплин.

Следует также заметить, что поиски ингибиторов теломеразы как противораковых факторов, а также использование теломеразы в раковой диагностике, начались в связи с пониманием ключевой роли процесса концевой недорепликации концов ДНК в судьбе клетки, предсказанного А.М. Оловниковым. К настоящему времени начатое АМ Оловниковым новое научное направление – теломерная биология – развивается практически на всех континентах (кроме Антарктиды). Но, несмотря на экспериментально подтвержденные постулаты первой теории, АМ Оловников работает в настоящее время над принципиально новой теорией старения.

Изучение процессов старения организма человека всегда занимало умы ученых. И сегодня многие исследователи пытаются до конца разгадать этот механизм, заключающийся в развитии и постепенном увядании клеток тела человека. Возможно, что ответы на эти вопросы помогут медикам увеличивать продолжительность жизни и улучшать ее качество при различных заболеваниях.

Сейчас существует несколько теорий о старении клетки. В этой статье мы рассмотрим одну из них. Она основана на изучении таких частей хромосом, заключающих в себе около 90 % ДНК клетки, как теломеры.

Что такое «теломеры»?

В каждом ядре клетки находится по 23 пары хромосом, представляющих собой Х-образно закрученные спирали, на концах которых находятся теломеры. Эти звенья хромосомы можно сравнить с наконечниками шнурков для обуви. Они выполняют такие же защитные функции и сохраняют целостность ДНК и генов.

Деление любой клетки всегда сопровождается раздвоением ДНК, т. к. материнская клетка должна передать информацию дочерней. Этот процесс всегда вызывает укорачивание ДНК, но клетка при этом не теряет генетическую информацию, т. к. на концах хромосом расположены теломеры. Именно они во время деления становятся короче, предохраняя клетку от утраты генетической информации.

Клетки делятся многократно и с каждым процессом их размножения теломеры укорачиваются. При наступлении критически маленького размера, который называется «предел Хейфлика», срабатывает запрограммированный механизм смерти клетки – апоптоз. Иногда – при мутациях – в клетке запускается другая реакция - программа, приводящая к бесконечному делению клетки. Впоследствии такие клетки становятся раковыми.

Пока человек молод, клетки его тела активно размножаются, но с уменьшением размеров теломер происходит и старение клетки. Она начинает с трудом выполнять свои функции, и организм начинает стареть. Из этого можно сделать такой вывод: именно длина теломер является самым точным индикатором не хронологического, а биологического возраста организма.

Краткая информация о теломерах:

  • они не несут генетической информации;
  • в каждой клетке человеческого организма заключено 92 теломеры;
  • они обеспечивают стабильность генома;
  • они защищают клетки от смерти, старения и мутаций;
  • они защищают структуру конечных участков хромосом при делении клетки.

Возможно ли защитить или удлинить теломеры и продлить жизнь?

В 1998 году американские исследователи смогли преодолеть предел Хейфлика. Значение максимального укорочения теломер различно для разных типов клеток и организмов. Предел Хейфлика для большинства клеток человеческого организма составляет 52 деления. Увеличить это значение в процессе экспериментов стало возможным путем активации такого особого фермента, воздействующего на ДНК, как теломераза.

В 2009 году ученые из Стэнфордского университета были удостоены Нобелевской премии за разработку метода стимуляции теломер. Эта методика основана на применении особой молекулы РНК, несущей в себе ген TERT (обратной теломеразной транскриптазы). Она является матрицей для удлинения теломер и распадается после выполнения своей функции. Полученные клетки «омолаживаются» и начинают делиться более интенсивно, чем ранее. При этом их малигнизация, то есть превращение в злокачественные, не наступает.

Благодаря этому открытию стало возможным удлинять концы хромосом более чем на 1000 нуклеотидов (структурных единиц ДНК). Если пересчитать этот показатель на годы жизни человека, то он составит несколько лет. Такой процесс воздействия на теломеры абсолютно безопасен и не вызывает мутаций, приводящих к бесконтрольному делению и малигнизации клеток. Это объясняется тем фактом, что после введения особая молекула РНК быстро распадается и иммунитет не успевает реагировать на нее.

Ученые сделали выводы о том, что теломераза:

  • защищает клетки от старения;
  • продлевает жизнь клетки;
  • предупреждает уменьшение длины теломер;
  • создает матрицу для «достраивания» теломер;
  • омолаживает клетки, возвращая их к молодому фенотипу.

Пока научные эксперименты, проводящиеся на основе теории ученых из Стэнфордского университета, выполнялись только на лабораторных мышах. В их итоге специалисты смогли затормозить старение кожи животных.

За это открытие работающая в США австралийка Элизабет Блекберн, американка Кэрол Грейдер и ее соотечественник Джек Шостак были удостоены Нобелевской премии. Ученые из Стэнфорда надеются, что созданная ими методика даст возможность в будущем лечить тяжелые заболевания (в том числе и нейродегенеративные), которые провоцируются укорочением теломер.

Питер Лэндсдорп, научный директор Европейского института биологии возраста рассказывает о роли теломер в процессах старения и образования опухолей:

Пугач Оксана Александровна

студент 3 курса, кафедра медицинской химии НГМУ,
РФ, г. Новосибирск

Е- mail : oksana - pugach @ rambler . ru

Суменкова Дина Валерьевна

научный руководитель, д-р биол. наук, доцент, кафедра медицинской химии НГМУ,
РФ, г. Новосибирск

Теломераза – это специфическая ДНК полимераза, которая «наращивает» теломерные районы хромосом. Фермент содержит в своем строении белковую часть и молекулу РНК. Известно, что теломеры состоят из 15 тысяч нуклеотидных пар, которые представляют собой повторы двух триплетов ТТА (четыре повтора) и ГГЦ (8 повторов). Теломеры большинства соматических клеток подвергаются укорачиванию при пролиферации клеток вследствие неполной репликации концевых участков (концевой недорепликации). Активность теломеразы проявляется в стволовых клетках, кератиноцитах, клетках сперматогенного эпителия, а в нормальных дифференцированных соматических клетках и клетках тканей её активность отсутствует.

Оказывается, что в клетках большинства опухолей теломераза активна. Так, в клетках доброкачественной опухоли происходит повышение теломеразной активности на 20–30 %, а при злокачественном процессе её активность достигает 70–100 %. Если в нормальных соматических клетках существует генетически обусловленный механизм контроля пролиферации, то раковые же клетки обладают способностью обходить этот механизм. Так как они приобретают свойство иммортальности, которое связано с активацией фермента теломеразы, компенсирующей укорочение теломеров. Следовательно, мы можем сделать вывод, что активация теломеразы может быть важным фактором прогрессирования опухолевых заболеваний. В некоторых опухолях активность теломеразы проявляется почти в 100 % случаев, например мелкоклеточный рак легкого, рак шейки матки, доброкачественные поражения миндалевидной железы. В тоже время имеются опухоли, у которых теломеразная активность не определяется, например лейомиома (доброкачественная опухоль, возникающая в мышечном слои матки – миометрии) .

Экспрессия теломеразы может возникать вследствие какого-либо отбора клонов при критическом уровне укорочении теломер. Сначала клетки начинают быстро делиться, при этом у них начинает укорачиваться длина теломер, затем выживают только те, у которых теломераза остается активной. И в этом случае мы можем говорить о том, что активность теломеразы может быть маркером опухолевой прогрессии и нежелательного прогноза. Таким примером является лимфогранулематоз (злокачественное заболевание лимфоидной ткани), в котором основное увеличение теломеразной активности осуществляется при переходе от первой стадии ко второй .

Другим вариантом механизма появления теломеразной активности являются нарушения метаболизма клеток, происходящие в процессе возникновения опухолевых заболеваний. В таком случае активность теломеразы проявляется в начале заболевания и служит маркером для опухолевого заболевания. Так, при раке шейки матки, теломеразная активность и стадия рака не имеет никакой зависимости, так как активна теломераза уже на первой стадии, а её активация происходит в процессе предопухолевых заболеваний . При гемобластозах (опухолевые заболевания кроветворной и лимфатической ткани) теломераза изначально может быть активна в исследуемом типе клеток, а в дальнейшем её активность будет лишь нарастать при переходе к раку. Так, в случае нарушения регуляции стволовой клетки, обладающей теломеразной активностью, сохраняется большой запас пролиферативного потенциала, достаточного для приобретения различных злокачественных признаков. При этом теломеразная активность проявляется лишь вначале роста опухоли. Метод детекции активности фермента не позволяет обнаружить её на уровне одной клетки, но уже небольшой участок теломераза-положительных клеток будет заметен. Механизмы экспрессии теломеразы, как правило, изучают на клеточных линиях, поэтому сложно сказать какой из них и с какой частотой встречается в исследуемом типе опухолевых заболеваний .

Определение активности теломеразы используют для диагностики опухолевых заболеваний и для создания потенциальных противоопухолевых средств – ингибиторов теломеразы. Измерение теломеразной активности и её интерпретация затрудняется тем, что многие нормальные клетки крови и костного мозга обладают теломеразной активностью. Уровень активности теломеразы изменяется с возрастом, чем старше человек, тем она меньше. Стоит отметить, что метод измерения теломеразной активности с помощью полимеразной цепной реакции не вполне количественный. Он не дает возможности зафиксировать небольшие различия. Учитывая, что активность теломеразы клеток зависит от их пролиферативного состояния, в случае положительного результата мы не можем сказать – обусловлена она большим количеством клеток с малой активностью фермента или малым количеством клеток с большей активностью теломеразы. Кроме того, есть вероятность появления ложноположительных результатов .

В связи с трудностями измерения теломеразной активности, её определяют в сочетании с измерением длины теломер. Длину теломер измеряют как длину концевых рестрикционных фрагментов, проводят количественную гибридизацию или Саузерн-анализ (выявление определенной последовательности ДНК в материале). В последнее же время стали использовать методики количественной полимеразной цепной реакции в реальном времени или анализ гибридизации клеток. В настоящее время методы детекции активности фермента активно разрабатываются .

Пока не найдены препараты, способные с высокой эффективностью подавлять экспрессию генов теломеразы, но есть подходы, которые используют факт активной работы промоторов теломеразы в опухолевых клетках. До этапа клинических испытаний дошли конструкции в составе онколитического аденовируса, который инъецируется непосредственно в саму опухолевую клетку. Этот вирус содержит гены, увеличивающие чувствительность клеток к предложенной терапии. Так как данные гены регулируются промоторами генов теломеразы то, следовательно, их действие осуществляется только на клетке с работающей теломеразой .

Так как в большинстве опухолевых клеток присутствует теломераза, она может стать хорошим кандидатом на роль антигена, связанного с опухолью. При активности теломеразы в клетке фрагменты теломеразной обратной транскриптазы экспонируются на клеточной поверхности и могут служить мишенью для иммунного ответа. Преимущество данной процедуры заключается в отсутствии периода ожидания, как при других методах подавления теломеразы. Клинические испытания были проведены для опухолей простаты, рака поджелудочной железы и гепатоцеллюлярной карциномы. Данная иммунотерапия показывает усиление иммунного ответа против опухоли. Только неясно, насколько могут пострадать здоровые стволовые клетки, которые также обладают теломеразной активностью .

При использовании методов подавления теломеразной активности имеется ряд проблем: эффект наступает с большой задержкой, так как должно пройти большое количество времени, чтобы в отсутствии теломеразы теломеры укоротились за счет недорепликации. Это время может длиться десятки клеточных циклов. В этом случае ингибирование теломеразы будет давать эффект только при малом количестве клеток. Разрабатывая методы противоопухолевой терапии с использованием ингибиторов теломеразы, необходимо учитывать, что некоторые опухолевые клетки способны переходить в длительно неделящееся состояние и тем самым не подаваться действию большинства химиотерапевтических агентов.

Однако в ряде случаев, если лечение будет содержать традиционные методы, которые действуют немедленно и уничтожают большую часть опухолевых клеток, и антителомеразную терапию, не позволяющую раковым клеткам длительно размножаться, то результат в перспективе будет, несомненно, лучше.

Список литературы:

  1. Глухов А.И., Григорьева Я.Е. Исследование активности теломеразы при разработке неинвазивной диагностики онкопатологий мочевого пузыря // Электронный научно-образовательный вестник «Здоровье и образование в XXI веке». – 2012. – Т. 14, – № 4. – С. 15–16.
  2. Егоров Е.Е., Теломеры, теломераза, канцерогенез и мера здоровья // Клиническая онкогематология. Фундаментальные исследования и клиническая практика. – 2010. – Т. 3, – № 2. – С. 191–194.
  3. Кушлинский Н.Е., Немцова М.В. Молекулярно-биологические характеристики злокачественных новообразований // Вестник РАМН. – 2014. – № 1. – С. 33–35.
  4. Свинарева Л.В. Влияние модифицированных ДНК и РНК олигонуклеотидов, содержащих теломерные повторы, на активность теломеразы и рост опухолевых клеток: Автореф. дис. канд. хим. наук – Москва, 2010. – 9 с.
  5. Скворцов Д.А., Рубцова М.П., Зверева М.Е. Регуляция теломеразы в онкогенезе // Acta Naturae (русскоязычная версия). – 2009. – С. 52–53.